RAG 负责 “猜答案”,Agent 负责 “走流程”,企业 AI 落地靠 “本体工程”

**RAG 忙着 “猜答案”,Agent 忙着 “走流程”—— 眼下企业 AI 的现状,说穿了更像一场热闹却无效的闹剧。可为什么我们砸重金打造的 “数字员工”,看着忙忙碌碌,最终却交不出实在成果?答案很简单:我们只给了它干活的 “方法论”(也就是各类工具),却偏偏忘了最关键的 —— 让它理解业务的 “世界观”(也就是本体)。
**

本文将带你跟随一位范友AI创业的脚步,从被反复捶打到顿悟,看懂被Palantir奉为圭臬的“本体工程”,如何成为LLM时代真正的胜负手。

大家好,我是老王(当然是化名)。

一个AI创业者,主打一个“氛围感营造”(vibe building)。我的PPT,总能让客户感觉赛博坦星人下一秒就要降临他们会议室;我的Demo,丝滑得让投资人以为帕累托最优已经在他们公司实现了。

但现实是,我司交付的后台,卡得像周一早高峰的东三环。

而这一切,都要从那场席卷了我们所有人的幻梦开始。

第一幕:RAG负责猜:我的AI大脑,死于一份午餐菜单

一开始,RAG(检索增强生成)就是我们圈子里的“光剑”,每个创始人手里都想挥舞一把。客户那堆积如山、格式感人的PDF、Word、烂Excel,不就是等着被我的“企业知识大脑”开光吗?

结果,“大脑”上线第一天,销售总监问了个直击灵魂的问题:“凤凰项目的毛利率是多少?”

我们那充满未来感的聊天框,开始优雅地转菊花,三十秒后,自信地回答:

“亲,食堂本周推荐菜品有:宫保鸡丁、鱼香肉丝、红烧茄子……”

那一刻,会议室里的氛围,确实营造得非常到位——一种混杂着尴尬、同情和“我就知道”的赛博朋克式冷寂。我当场裂开。

后来,我们这群“炼丹师”在无数个不眠夜后才算搞懂,RAG的本质,就是个“CTRL+F Pro Max”。它在语义的汪洋大海里,靠的是关键词的浮力游泳。在客户的知识库里,“凤凰项目”躺在项目计划书里,“毛利”的计算规则藏在财务手册第57页的脚注里,而具体数据,则散落在某个Excel的sheet17的犄角旮旯里。这三者之间,隔着一个太平洋的“常识鸿沟”。

RAG的“检索”,根本“增”不动真正的“强”。它只是把一堆长得像的乐高积木,一股脑儿全扔给LLM这个“外包工”,让它现场freestyle。运气好,拼出个自行车;运气不好,就是一坨不可名状的午餐菜单。

R-A-G,说白了,就是个猜。

第二幕:Agent负责演:我的数字员工,一个热爱cosplay的多动症儿童

RAG的坑,踩得我脑门发亮。我们没气馁,转头就杀向了更性感的方向——Agent

ReAct框架、Tool-Use、Function Calling……这些词一出,我又感觉自己是“天选之子”了。这次我不叫“知识大脑”了,我管它叫“AI数字员工”,听着就像能直接上岗、拿N+1的那种。

结果,这个“数字员工”入职后,表现得像个精力过剩但没带脑子的“多动症儿童”。

你让它去“查一下凤凰项目的进度,然后发邮件催一下负责人”。它的小脑瓜里就开始了一场盛大的内心戏,一场ReAct循环的cosplay:

  1. 【思考】:老板让我查进度,我该用哪个工具?
  2. 【行动】:调用document_searcher。
  3. 【观察】:返回了15个文档,信息爆炸了!
  4. 【思考】:我该看哪个?什么是“负责人”?
  5. 【行动】:调用user_directory_lookup。
  6. 【观察】:返回了公司所有部门的负责人列表……

最后,它在原地转了三百个回合的菊花,然后告诉我:“对不起,任务太复杂了。” 要么就是“演”砸了,发了封邮件给全体员工,标题是“你好,凤凰”。

客户的眼神,从期待变成了慈悲。我明白了,我的Agent之所以“智障”,不是因为它不够“智能”,而是因为它对客户的“世界”一无所知。

Agent,说白了,就是个演。

第三幕:两个朋友,两种活法,和一个叫“本体”的幽灵

又一个失眠的夜晚,我开始怀疑人生。我约了两个也在AI圈里摸爬滚打的朋友喝酒。一个在大厂搞自研,我们叫他“卷王”;一个在传统企业做甲方,我们叫他“金主”。

“卷王”一脸“你们凡人不懂”的表情,吐了个烟圈说:“问题不在AI,在你家客户的数据。我们搞了一年多,没搞别的,就搞‘本体工程’。给AI画一张公司的‘魂环地图’。”

我问这活儿得多大的阵仗,“卷王”说:“不多,十几个顶尖数据工程师,搞了一年半吧。”

我默默端起了酒杯,告辞。

我又转向“金主”。他慢悠悠地说:“我们没那本事自研,买了套巨贵的平台。也提本体那套,但更像是给了我们一堆现成的‘乐高套装’。开箱即用,很快。但总感觉像穿了一身剪裁精良但不完全合身的西装,咋动都不得劲。”

那个晚上,我好像明白了。无论你是“自研卷王”,还是“氪金巨佬”,想让AI在企业里真正干活,都绕不开给它一个清晰的“世界观”。这个“世界观”,就是“本体”。而“本体”这个词,像一个幽灵,总让我想起那个传说中的、神神秘秘的公司——Palantir。

第四幕:偶遇老炮,一场关于“数据灵魂”的进化论

命运的齿轮开始转动。

上周,在一个行业大会上,我通过朋友认识了一位“老炮”。头发花白,眼神犀利,曾在一家能源巨头工作,深度跟过一个Palantir的项目。

我赶紧像小学生一样凑过去请教。

“王总啊,”老炮呷了口茶,“你们现在搞的这些,都是术。而Palantir搞的,是道。”

“什么道?”

‘概念化’(Conceptualization)的道。

老炮说:“当年那帮Palantir的FDSE(Forward Deployed Software Engineer )空降到我们公司,我以为他们是来写代码的。结果几个月下来,代码没写几行,天天缠着我们开会。从CEO到一线钻井工人,逮谁跟谁聊。他们不是在问‘你的数据在哪里’,而是在问‘在你脑子里,一个‘油田’到底意味着什么?’”

“对业务来说,‘油田’是地理位置和产量。对财务来说,是资产和折旧。对HR来说,是人员编制。FDSE的工作,就是扮演‘数据神父’,听取所有人的‘忏悔’和‘告解’,然后把这些不同视角下、存在于人脑中的、模糊的‘概念’,统一成一个所有人和机器都能理解的、精确的、唯一的‘数字灵魂’。这玩意儿,就是本体 (Ontology)。”

我听得入了迷。

我把最近看到的一篇学术论文里的发现讲给老炮听:研究者发现,直接把两份复杂的文档给LLM,让它对齐里面的概念,它会彻底罢工。但如果你给它一份解释这些文档设计思想的“说明书”(也就是概念模型),LLM几乎能完美完成任务。

老炮一拍大腿:“就是这个理!那份‘说明书’,就是本体的雏形!但小王,你只看到了其一,没看到其二。这套玩法,正在进化。”

他身体前倾,压低了声音:“我们那时候,是‘大数据时代’。Palantir的魔法,靠的是两样东西:FDSE超凡的大脑 + Foundry平台的强大能力。FDSE负责把业务的灵魂抽出来,Foundry负责把这个灵魂灌注到数据里。这是个手艺活,精妙,但也很重。”

“现在呢?”我追问。

现在是LLM时代,游戏规则变了。” 老炮眼中放光,“LLM并没有让FDSE失业,而是给了他们一把‘神之锤’。以前,FDSE是那个既画图纸又亲自打铁的宗师。现在,他们更像个总设计师,画完图纸,大部分粗重的锻打、塑形工作,可以交给LLM这个‘AI铁匠学徒’去完成。”

“Palantir自己也没闲着,他们在Foundry之上,搞了个新平台叫AIP(Artificial Intelligence Platform)。那玩意儿,就是把LLM直接接到了企业的数据灵魂上。以前,我们建好本体,FDSE还得花一周给我们搭个分析应用的界面。现在,我们的业务总监可以直接在AIP里用大白话问:‘把北海所有产量不达标的油田,以及它们的负责人和联系方式,拉个表给我。’ AIP里的LLM,通过本体,瞬间就能听懂这句话里的每一个黑话——什么是‘产量不达标’,谁是‘负责人’——然后直接生成结果,甚至是个动态看板。从一周的开发,变成十秒的对话。你品品,这是多大的进化?”

我倒吸一口凉气。

老炮靠回椅背,做了个总结性的陈词:“所以啊,你们现在天天搞Prompt工程,其实是在教AI‘怎么说’。而Palantir从始至终搞的本体工程,是在教AI‘怎么想’! 没教会它思考,你说得再花哨,它也只是在猜,在演。”

尾声:落地生根,AI铁匠的诞生

和老炮聊完,我醍醐灌顶。

我的下一步,不是更花哨的Agent,也不是更牛逼的RAG算法,而是——Ontology RAG

在RAG和企业数据之间,加一个“本体层”。这个本体,就是我司的核心价值。

  • 之前:用户问“凤凰项目毛利” -> RAG猜。
  • 之后:用户问“凤凰项目毛利” -> 本体层告诉AI:“凤凰项目是一个‘内部研发项目’,它的‘毛利’不存在,但有‘预算’和‘支出’,你想看的是不是‘预算执行率’?” -> AI恍然大悟,不再演戏,给出精准答案。

这才是真正的落地生根。

而这个本体,也不再需要一支“海豹突击队”来构建。LLM的出现,让“人机协同”的打铁模式成为可能。人类专家负责提供“图纸”,LLM这个“AI铁匠学徒”负责打出“毛坯”,最后再由专家来“精修开刃”。而且甚至连这个“图纸”,也可以让LLM一起来画。

而且的而且,甚至的甚至是,如果你不懂什么叫领域数据的“本体论”,读完这篇文章就可以和LLM聊起来,怎么去做一个FDSE!因为今天的LLM,已经具备自然语言与形式语言的元认知能力,而你要做的不过是把你想要构建的认知能力本体投射到LLM(ontological prompt)。

所以,朋友们,当大家还在卷Prompt、卷Agent框架的时候,或许我们该往后退一步,看看那个被忽略的战场。

企业AI的下半场,战争的关键,已经从“模型智能”,转向了“数据灵魂”的塑造。

而我,一个vibe builder,终于找到了我真正要构建的vibe——那是一个让数据开口说话,让智能拥有灵魂的未来。
读者福利大放送:如果你对大模型感兴趣,想更加深入的学习大模型**,那么这份精心整理的大模型学习资料,绝对能帮你少走弯路、快速入门**

如果你是零基础小白,别担心——大模型入门真的没那么难,你完全可以学得会

👉 不用你懂任何算法和数学知识,公式推导、复杂原理这些都不用操心;
👉 也不挑电脑配置,普通家用电脑完全能 hold 住,不用额外花钱升级设备;
👉 更不用你提前学 Python 之类的编程语言,零基础照样能上手。

你要做的特别简单:跟着我的讲解走,照着教程里的步骤一步步操作就行。

包括:大模型学习线路汇总、学习阶段,大模型实战案例,大模型学习视频,人工智能、机器学习、大模型书籍PDF。带你从零基础系统性的学好大模型!

现在这份资料免费分享给大家,有需要的小伙伴,直接VX扫描下方二维码就能领取啦😝↓↓↓
在这里插入图片描述

为什么要学习大模型?

数据显示,2023 年我国大模型相关人才缺口已突破百万,这一数字直接暴露了人才培养体系的严重滞后与供给不足。而随着人工智能技术的飞速迭代,产业对专业人才的需求将呈爆发式增长,据预测,到 2025 年这一缺口将急剧扩大至 400 万!!
在这里插入图片描述

大模型学习路线汇总

整体的学习路线分成L1到L4四个阶段,一步步带你从入门到进阶,从理论到实战,跟着学习路线一步步打卡,小白也能轻松学会!
在这里插入图片描述

大模型实战项目&配套源码

光学理论可不够,这套学习资料还包含了丰富的实战案例,让你在实战中检验成果巩固所学知识
在这里插入图片描述

大模型学习必看书籍PDF

我精选了一系列大模型技术的书籍和学习文档(电子版),它们由领域内的顶尖专家撰写,内容全面、深入、详尽,为你学习大模型提供坚实的理论基础。
在这里插入图片描述

大模型超全面试题汇总

在面试过程中可能遇到的问题,我都给大家汇总好了,能让你们在面试中游刃有余
在这里插入图片描述

这些资料真的有用吗?

这份资料由我和鲁为民博士(北京清华大学学士和美国加州理工学院博士)共同整理,现任上海殷泊信息科技CEO,其创立的MoPaaS云平台获Forrester全球’强劲表现者’认证,服务航天科工、国家电网等1000+企业,以第一作者在IEEE Transactions发表论文50+篇,获NASA JPL火星探测系统强化学习专利等35项中美专利。本套AI大模型课程由清华大学-加州理工双料博士、吴文俊人工智能奖得主鲁为民教授领衔研发。

资料内容涵盖了从入门到进阶的各类视频教程和实战项目,无论你是小白还是有些技术基础的技术人员,这份资料都绝对能帮助你提升薪资待遇,转行大模型岗位。
在这里插入图片描述
👉获取方式

😝有需要的小伙伴,可以保存图片到VX扫描下方二维码免费领取【保证100%免费】
在这里插入图片描述
相信我,这套大模型系统教程将会是全网最齐全 最适合零基础的!!

### RAG架构与AI Agent的结合方式及实现过程 RAG(Retrieval-Augmented Generation)是一种将检索系统与生成模型相结合的技术,其主要目标是通过引入外部知识源来增强生成内容的相关性和准确性。当RAGAI Agent结合时,形成了一种新型架构——RAG+AI Agent,该架构不仅继承了两者的优点,还进一步扩展了它们的应用范围[^1]。 --- ### 一、RAGAI Agent的核心关系 RAG作为知识增强工具,专注于通过高效的检索机制为生成模型提供上下文支持;而AI Agent则是一个具有自主决策能力和执行能力的智能体。两者结合的关键在于: - **动态知识注入**:RAGAI Agent提供了实时访问外部知识库的能力,使其能够在面对新问题或未知领域时快速获取所需信息[^3]。 - **逻辑推理支持**:AI Agent可以通过自身的推理模块处理由RAG检索到的知识,从而做出更明智的判断和行动。 这种协作模式使得AI Agent不再局限于预训练阶段学到的静态知识,而是能够持续从外界吸收最新数据,保持与时俱进的状态。 --- ### 二、RAG+AI Agent的主要结合方式 #### (1)Agentic RAG 在这种模式下,AI Agent扮演主动角色,负责制定检索策略并指导RAG完成具体的文档提取任务。随后,AI Agent会综合考虑检索结果及其内部状态,决定下一步动作[^2]。 ##### 关键流程描述 - 输入接收:用户向AI Agent提交请求; - 查询构建:Agent依据当前对话历史或其他背景条件生成适合于RAG使用的查询串; - 文档检索:调用RAG组件返回最相关的几篇文档摘要或者段落片段; - 响应合成:最后再把这些材料交给大型语言模型去撰写最终答复。 这种方法特别适用于那些需要频繁交互且话题跨度较大的应用场景之中。 --- #### (2)嵌入式集成 另一种常见的做法就是把整个RAG流水线完全内置到单个统一框架之内,让每一个步骤都紧密相连不可分割开来进行单独操作。此时,我们可以看到如下几个典型特征: - 数据流无缝衔接:从前端接收到原始信号直至后端输出成品文案之间没有任何人为干预痕迹存在; - 参数共享机制建立起来之后有助于降低计算成本同时也提升了整体效率水平. 例如,在某些聊天机器人产品里就采用了这样的设计方案—每当遇到无法直接作答的情况便会触发后台启动相应程序寻找匹配条目然后再拼凑成完整的回复发送回去给前端显示出来让用户查看阅读理解等等一系列连续性的自动化运作过程得以顺利完成下来而不至于中断卡顿现象发生. --- ### 三、具体实现过程中需要注意的地方 尽管理论上看起来非常美好但实际上要成功部署这样一个复杂的体系还需要克服不少困难挑战才行比如下面列举出来的几点就需要格外引起重视思考解决办法才行: 1. **延迟控制**:由于涉及到网络通信等因素的影响可能会导致响应时间变长进而影响用户体验质量所以必须采取有效措施加以改善优化. 2. **资源消耗管理**:大规模索引维护加上多次迭代运算必然会产生较高的硬件设施投入费用开支因此应当寻求性价比更高的解决方案降低成本支出压力. 3. **隐私保护合规性审查**:随着法律法规日益严格企业在开发此类服务的时候也必须要充分考虑到个人信息安全防护方面的要求以免触犯相关规定遭受处罚风险. --- ```python import torch from transformers import AutoTokenizer, AutoModelForSeq2SeqLM from rag_framework import RetrievalAugmentedGenerator class RagAgent: def __init__(self): self.tokenizer = AutoTokenizer.from_pretrained("facebook/rag-token-base") self.model = AutoModelForSeq2SeqLM.from_pretrained("facebook/rag-token-base") self.rag_system = RetrievalAugmentedGenerator() def process_query(self, user_input): retrieved_docs = self.rag_system.retrieve_documents(user_input) combined_context = " ".join(retrieved_docs) inputs = self.tokenizer( f"question: {user_input} context: {combined_context}", return_tensors="pt", max_length=512, truncation=True ) with torch.no_grad(): outputs = self.model.generate(inputs.input_ids) answer = self.tokenizer.decode(outputs[0], skip_special_tokens=True) return answer agent_instance = RagAgent() response = agent_instance.process_query("What is the capital of France?") print(response) ``` 以上代码展示了一个简单的RAG+AI Agent原型实例化过程,其中包括初始化必要的NLP工具包以及定义核心函数用于处理来自用户的提问并将之转化为标准格式传递至后续环节当中直到得出结论为止。 --- ###
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值