- 博客(996)
- 收藏
- 关注

原创 在个人电脑上运行Llama 3 70B大规模模型指南
随着人工智能和机器学习技术的迅猛发展,像Llama 3 70B这样的庞大语言模型已经成为了研究、开发和应用中的重要工具。这篇文章将详细介绍如何在个人电脑上运行Llama 3 70B大模型,并涵盖硬件要求、软件环境配置、安装步骤、运行示例和常见问题的解决方案。虽然运行这样一个大规模的模型在性能上有限制,但对于实验和学习非常有帮助。
2024-06-15 10:35:11
8025

原创 2024!国内AI大模型平台哪家强?全方面测评来了
这篇仅是开坑哈,后面会持续更新的~主旨就是想要在滚滚浪潮中帮助AI开发者发现、汇聚到简单、好用的AI大模型平台&开发者社区上来,共建国内繁荣AIGC生态!!有些规模太小、不好用、吃相太难看(没几个模型就要走付费变现路子的)的平台我就先不放上来啦。
2024-06-05 17:14:02
8164

原创 如何学习训练大模型——100条建议(附详细说明)_如何训练自己的大模型
通过深入了解本文中的这些细节,并在实际项目中应用相关知识,将能够更好地理解和利用大模型的潜力,不仅在学术研究中,也在工程实践中。通过不断探索新方法、参与项目和保持热情,并将其应用于各种领域,从自然语言处理到计算机视觉和自动驾驶。通过不断学习、实践和探索,可以不断提升自己在深度学习领域的技能和洞察力,同时也能为社会和行业带来创新和改进。从小规模的项目和模型开始,逐渐迭代和扩展到更大的模型,逐步积累经验,最终能够处理大模型和复杂任务。分享您的研究成果和代码,以获得反馈和建立声誉。
2024-04-17 11:56:47
7734

原创 AI 入门,从零搭建完整 AI 开发环境,并写出第一个 AI 应用
在本文中,我们从零开始,一步步搭建了一个完整的AI开发环境,并创建了一个简单的AI应用。您学习了如何安装Python、Anaconda、TensorFlow,以及如何使用Jupyter Notebook进行开发。通过这个简单的手写数字识别应用,您不仅学习了AI的基本概念,还亲身体验了AI的应用。AI是一个广阔而充满机遇的领域,希望这个教程能够激发您继续深入学习和探索AI的兴趣。
2024-04-10 11:02:43
11765
1

原创 国内超大型智能算力中心建设白皮书 2024
智算中心建设通过领先的体系架构设计,以算力基建化为主体、以算法基建化为引领、以服务智件化为依托,以设施绿色化为支撑,从基建、硬件、软件、算法、服务等全环节开展关键技术落地与应用。一、体系架构(一)总体架构图8 智算中心总体架构智能算力中心建设白皮书,重点围绕基础、支撑、功能和目标四大部分,创新性地提出了智算中心总体架构。其中,基础部分是支撑智算中心建设与应用的先进人工智能理论和计算架构;支撑部分围绕智算中心算力生产、聚合、调度、释放的作业逻辑展开;功能部分提供算力生产供应、数据开放共享、智能生态建设和产业创
2024-04-08 15:07:31
11655
1
原创 为什么一定要做Agent?大模型开发者必看,建议收藏的深度解析
摘要:Agent智能体的价值与前景 文章探讨了Agent智能体的核心价值与存在意义。尽管存在响应速度慢、幻觉问题和交互体验差等挑战,但Agent的核心优势在于显著降低开发门槛、简化复杂流程、提供多样化交互方式并实现任务协同。相比传统开发方式,Agent能解放生产力,提高效率,是大模型时代的重要技术方向。文章通过类比剪映、美图秀秀等AI工具降低专业门槛的案例,说明Agent将重塑软件开发模式,让非技术人员也能通过自然语言实现个性化需求。随着技术优化,Agent的缺陷将逐步解决,其作为"数字生产力&q
2025-09-09 20:45:00
265
原创 【收藏学习】多智能体系统设计精髓:构建高效安全协作的AI代理网络
多智能体系统(MAS)是生成式AI的重要架构,由多个独立LLM智能体组成,各司其职、协作完成复杂任务。本文提供8个最佳实践:明确角色职责、本地化内存、精细化管理工具访问、构建模块化编排、设定终止条件、完善日志记录、考虑安全中断、实施版本控制。这些实践能帮助开发者构建稳定可靠的多智能体应用,从单一对话机器人时代迈向智能代理网络时代。
2025-09-09 19:15:00
558
原创 【必学收藏】Agent四大范式全景解析:从入门到精通大模型智能体工作原理
大语言模型赋能智能体规划:五大范式与挑战 本文系统梳理了大语言模型(LLM)驱动的智能体规划技术,将其归纳为任务分解、多方案选择、外部模块辅助、反思优化和记忆增强五大范式。任务分解采用"分而治之"策略;多方案选择通过生成候选计划并筛选最优解;外部模块引入符号/神经规划器提升效率;反思优化增强容错能力;记忆组件存储知识辅助决策。研究指出,当前技术仍面临幻觉、效率和多模态处理等挑战,未来需结合符号规划、优化评估模块并整合多模态能力。五大范式相互关联,往往需要组合使用以应对复杂任务场景。
2025-09-09 18:45:00
467
原创 想学大模型智能体开发?这份指南帮你吃透 11 款顶尖 AI Agent 框架!
想学大模型智能体开发?这份指南帮你吃透 11 款顶尖 AI Agent 框架!
2025-09-09 14:31:57
807
原创 收藏干货:大模型检索增强生成(RAG)技术深度剖析:GraphRAG、向量与Agentic三种方案对比
本文系统介绍了三种主流RAG技术的核心特点与应用场景。向量RAG通过高维向量相似检索实现高效语义检索,适用于多模态大规模检索;GraphRAG基于"实体-关系"图结构,擅长处理复杂关系推理;Agentic RAG具备自主决策能力,可优化检索流程并自我修正。文章分析了各类技术的代表工具和优势场景,指出未来混合式RAG将成为主流,融合向量检索效率、图结构关系推理和智能代理的自适应能力,助力企业构建更智能的AI应用系统。
2025-09-08 20:45:00
891
原创 掌握大模型Agent开发:基于LangChain的流量风险审计系统实战教程(含完整代码)
文章介绍了一个基于LangChain和MCP开发的流量风险审计系统,通过四个模块实现风险检测闭环:1)AdvancedRiskTrafficAnalyzer使用正则匹配检测风险流量;2)AutonomousAuditAgent通过LangChain构建AI代理生成POC;3)curl-executor_mcp执行Curl命令模拟攻击;4)SSRFReceiver监听验证漏洞。系统采用多线程和异步处理提升效率,并包含安全验证机制。技术栈包括正则匹配、LangChain、FastMCP及异步并发处理,实现从风险
2025-09-08 19:45:00
635
原创 【珍藏必备】Agentic Memory技术解析:让AI智能体拥有持续学习的能力
摘要 本文探讨了Agentic AI时代记忆作为智能体核心能力的定义与分类,分析了记忆技术从短期工作记忆到长期知识存储的演进路径。文章对比了人脑记忆模型与智能体记忆系统的异同,指出智能体记忆主要通过上下文(短期)、LLM参数(长期)和外挂存储实现。重点介绍了当前主流Agent Memory技术方案如MemoryBank、MemOS等,以及阿里云Tablestore团队推出的专用SDK。研究表明,记忆能力使智能体具备持续学习、连贯对话和个性化服务等关键特性,相关技术正快速发展并受到资本市场关注。
2025-09-08 18:45:00
955
原创 知识图谱构建新路径:LLM 图转换器的使用方法详解
本文介绍了如何利用大语言模型(LLMs)从非结构化文本构建知识图谱,重点分析了LLM图转换器的两种工作模式及其应用场景。文章首先阐述了知识图谱在支持检索增强生成(RAG)应用中的重要性,特别是处理多跳推理和结构化操作任务时的优势。随后详细说明了LLM图转换器的两种工作模式:工具驱动模式(利用结构化输出)和提示驱动模式(依赖少样本提示),并比较了它们的优缺点。文章还介绍了如何定义图谱模式(graph schema)来规范信息抽取,包括节点类(Node)、关系类(Relationship)和属性类(Proper
2025-09-07 22:15:00
757
原创 LangChain 深度剖析:大模型工程框架架构全流程解析
LangChain是大模型工程化的主流框架,提供全链路解决方案,覆盖业务编排、工具调用、知识管理和多模型协作。其核心组件包括Chains、Agents、Memory和Tools,支持智能决策、上下文管理和外部接口调用。通过微服务化部署、异步执行和负载均衡,LangChain实现高并发处理和多模型动态路由,优化延迟、吞吐量和成本。该框架降低了企业AI应用门槛,为复杂任务提供可扩展架构保障。学习资料包括理论教程、实战案例和面试题库,适合零基础开发者系统掌握大模型技术。
2025-09-07 12:00:00
1703
原创 抓住 AI Agent 创业风口!程序员搭建自动化公司实现月入十万的完整指南
抓住 AI Agent 创业风口!程序员搭建自动化公司实现月入十万的完整指南
2025-09-07 09:45:00
485
原创 智能问答的两种核心路径:问答对模式 vs RAG 技术
智能问答系统选型指南:问答对与RAG技术对比 智能问答系统已成为企业提升服务效率的关键工具。目前主流技术路径有两种:基于问答对的系统和基于文档的RAG系统。问答对系统通过预设问答实现快速匹配,适合FAQ等固定场景;RAG系统结合检索与大模型生成,能处理复杂查询和新问题。选择时需考虑场景需求:客服等简单场景适用问答对,研发文档等复杂场景更适合RAG。混合方案可兼顾效率与灵活性,未来RAG应用将随技术进步更广泛。企业应根据实际需求选择最优方案。
2025-09-05 19:39:56
987
原创 从 Token 原理到成本优化:大模型入门核心指南,一文吃透 AI “语言密码”
从 Token 原理到成本优化:大模型入门核心指南,一文吃透 AI “语言密码”
2025-09-05 15:18:21
787
原创 从 0 到 1 构建企业级 AI 智能体:多 Agent 高效协作关键步骤,手把手实操
从 0 到 1 构建企业级 AI 智能体:多 Agent 高效协作关键步骤,手把手实操
2025-09-05 15:12:31
864
原创 “通用 Agent 已死”?别慌,这个方向才是未来出路
2025:AI Agent元年 2025年成为AI Agent爆发元年,三大关键因素推动:1)Claude 3.7提升模型智能;2)MCP协议打通工具调用;3)Manus确立交互标准。初创公司凭借速度优势(如Manus月活2300万、Genspark 45天营收3600万美元)跑赢保守大厂,但通用Agent面临模型厂商下场竞争(如OpenAI整合Deep Research)的威胁。未来趋势转向垂直化(如设计类Lovart),人类需从执行者转为AI协作指挥者,强化领导力等软技能。行业机遇与挑战并存,垂直场景和
2025-09-04 20:15:00
759
原创 从 0 到 1 实战:LLM 智能简历筛选 Agent 系统搭建(含设计 + 分步实现)
本文提出了一种基于大语言模型(LLM)的智能简历匹配系统,旨在解决传统人工筛选效率低、不智能、难以量化等问题。系统采用三阶段筛选流程:首先通过语义向量检索初筛相关简历,再用硬性条件过滤,最后进行多维度综合评分排序。关键实现包括简历结构化解析、查询意图理解、向量索引构建以及加权评分算法设计。该系统支持自然语言交互,能自动提取关键信息并提供量化匹配度分析,显著提升了简历筛选的效率和精准度,同时减少人工偏见。未来可进一步优化模型性能和扩展评估维度。
2025-09-04 19:15:00
1496
原创 怎样把任意文本变成知识图谱?分步骤教你实现
知识图谱构建方法摘要 本文介绍了一种将任意文本转化为概念图(Graph of Concepts)的实用方法。该方法通过以下步骤实现:1)将文本分割为块;2)使用开源LLM(如Mistral 7B)提取概念及其语义关系作为节点和边;3)基于上下文邻近性建立概念间关联;4)合并相似概念对并计算权重。采用NetworkX进行图处理,支持可视化交互操作(节点拖动、缩放等)。与传统的检索增强生成(RAG)相比,这种图结构能更有效地表示复杂关系,适用于图增强生成(GAG)等应用场景。项目提供完整Python实现,可在本
2025-09-04 15:54:12
787
原创 手把手教你构建 AI 智能体的效果自我优化系统
本文探讨了AI智能体在实际应用中的关键问题。作者指出,构建AI智能体只是第一步,更重要的是找到合适的业务场景,让技术真正解决实际问题。AI智能体的用户大多是业务人员而非技术人员,他们更关注业务效果而非技术细节。文章强调,业务场景是既有的而非创造的,AI智能体只是提供新的技术手段突破现有瓶颈。作者建议建立自动化优化体系,以业务指标为主进行量化评估,通过数据驱动发现问题、诊断问题并解决问题。同时指出,初期应更关注系统运行而非指标完美,逐步实现从人工协同到自动优化的过渡,最终提升AI智能体的落地效果。
2025-09-03 21:00:00
817
原创 实战落地可靠 AI Agent:从提示词设计、工作流规划到知识库构建全指南
AI Agent应用落地的三大关键要素 随着大语言模型技术的成熟,AI Agent开发重心已转向提示词工程、工作流设计和知识库构建三大领域。本文系统阐述了构建可靠高效AI Agent的方法论: 提示词工程:强调系统提示词的结构化设计(角色+上下文+示例+输出规范),并推荐使用专业工具优化提示词,同时分享标记方法和few-shot学习技巧。 工作流设计:建议采用DSL(如Mermaid)替代自然语言描述复杂流程,通过结构化语法提升流程准确性,推荐使用AI辅助生成流程图。 知识库构建:详细分析RAG技术的实现原
2025-09-03 19:45:00
888
原创 拆解 React Agent 实现思路:从流程设计到技术细节
国内AI领域创新持续加速,开源大模型密集发布,智能体(Agent)等方向涌现众多突破。本文聚焦React Agent技术原理,详解其"思考-行动-观察"循环机制,拆解提示词模板、工具库等核心组件,并推荐京东开源的JoyAgent-JDGenie项目。该项目采用SpringBoot3.x纯手写实现,架构清晰,支持私有化部署,是学习智能体框架的优质资源。文末还提供了包含学习路线、实战案例和必读书籍的大模型学习资料包,助力开发者系统掌握AI大模型技术。
2025-09-03 19:00:00
817
原创 继提示词工程、RAG 之后,LangChain 引领新风向:上下文工程成 AI 领域新焦点!
继提示词工程、RAG 之后,LangChain 引领新风向:上下文工程成 AI 领域新焦点!
2025-09-03 15:21:12
707
原创 RAG 负责 “猜答案”,Agent 负责 “走流程”,企业 AI 落地靠 “本体工程”
企业AI现状:从“猜答案”到“走流程”的无效循环 当前企业AI应用陷入两难:RAG(检索增强生成)像“猜谜游戏”,常给出无关答案;Agent(智能体)则忙于“表演流程”,缺乏业务理解。核心问题在于,AI缺少对业务的“世界观”(本体),仅依赖工具而无法真正落地。 关键发现: RAG的局限:依赖关键词匹配,难跨文档关联信息,导致“答非所问”。 Agent的困境:流程复杂却无业务认知,最终“演”成无效操作。 破局点——本体工程:如Palantir的实践所示,需为AI构建业务概念体系(如“油田”对财务、HR的不同含
2025-09-02 22:15:00
464
原创 Agent 构建怎么搞?小白也能懂的实操思路
AI任务处理五大模式解析 反思模式:通过"生成-反思-迭代"闭环优化回答质量 工具模式:调用API和外部工具获取实时信息辅助决策 ReAct模式:结合推理与行动能力,先思考后执行 规划模式:将复杂任务分解为可管理的子任务逐步完成 多代理模式:多个专业Agent协同完成复杂任务 这些模式各具特色,适用于不同场景的任务处理。随着大模型技术发展,相关人才缺口持续扩大,掌握这些模式将有助于提升AI应用能力。
2025-09-02 20:00:00
658
原创 小白也能上手:从 0 到 1 搭建 Agent 的超清晰框架指南
AI Agent入门指南:从核心逻辑到应用实践 本文介绍了AI Agent技术的基本框架和应用场景。Agent由三大核心组件构成:LLM(模型)作为"大脑"、Memory(记忆系统)存储知识/变量/数据、Plugin(插件工具)提供外部能力。以字节扣子平台为例,Agent可通过API/SDK对接微信公众号、APP等场景,实现多模态交互。 关键搭建步骤包括:1)选择支持function call的模型;2)按需添加插件和知识库(RAG技术);3)通过工作流编排复杂任务逻辑。学习建议从简易b
2025-09-02 19:00:00
690
原创 Lang-Agent——可视化AI编程新利器
Lang-Agent是基于LangGraph技术的可视化Agent配置平台,支持自定义状态变量和复杂逻辑控制。核心功能包括状态变量管理、可视化节点配置(LLM、输入/输出节点等)、多模型支持(LLM/Embedding)及向量库集成(Postgres/Milvus)。技术栈采用FastAPI后端+ReactFlow前端,支持自定义节点扩展。安装需Poetry/Yarn管理依赖,提供模型配置、MCP服务调用等全流程解决方案。附大模型学习资料,含实战项目、书籍PDF及面试题库,适合零基础快速入门AI领域。
2025-09-01 21:30:00
644
原创 2025 LLM 技术新突破:智能体链范式、结构化提示词语言等 4 项关键技术详解
本文聚焦大模型与多智能体系统的前沿研究,提出多项创新方法。研究背景指出当前大模型存在置信度估计不足、提示工程缺乏标准化等问题。核心创新包括:1)Chain-of-Agents范式实现单模型内多智能体协作;2)FineCE方法提供细粒度置信度估计;3)POML标记语言标准化提示词工程;4)PASR方法实现主动自我修正。实验表明,这些方法在推理效率、任务处理能力、输出可靠性等方面均有显著提升。研究为构建更智能、可靠的大模型系统提供了新思路,同时开源相关资源推动领域发展。未来可向多模态、轻量化等方向拓展。
2025-09-01 18:39:09
782
原创 【新手友好】Qwen-Agent 零基础搭建指南(附关键步骤)
【摘要】本文为零基础用户提供Qwen-Agent搭建的简明指南,涵盖环境配置、模型部署(支持本地和云端服务)、应用开发(含RAG实现)、工具调用及多Agent路由等核心模块。通过代码示例和运行结果展示,直观演示文本处理、图像生成、天气查询等场景应用。文末附赠大模型学习资料包(含视频教程、实战项目、技术文档及面试题库),由清华大学-加州理工双料博士团队研发,适合零基础入门AI开发。目前国内大模型人才缺口达百万级,学习资源可扫描文末二维码免费领取。
2025-09-01 17:39:16
646
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人