昇腾环境下使用docker部署mindie-service

MindIE是基于昇腾硬件的运行加速、调试调优、快速迁移部署的高性能深度学习推理框架。它包含了MindIE-Service、MindIE-Torch和MindIE-RT等组件。我主要用MindIE-Service的功能,这个组件对标的是vllm这样的大语言推理框架。

启动docker容器

先拉取镜像(要去官网获取最新镜像版本)

docker pull swr.cn-central-221.ovaijisuan.com/dxy/mindie:1.0.RC1-800I-A2-aarch64

然后启动容器,我这里将前2张NPU加速卡映射到docker内:

docker run --name my_mindie -it -d --net=host --shm-size=500g \
       --device=/dev/davinci0 \
       --device=/dev/davinci1 \
       -w /home \
       --device=/dev/davinci_manager \
       --device=/dev/hisi_hdc \
       --device=/dev/devmm_svm \
       --entrypoint=bash \
       -v /usr/local/Ascend/driver:/usr/local/Ascend/driver \
       -v /usr/local/dcmi:/usr/local/dcmi \
       -v /usr/local/bin/npu-smi:/usr/local/bin/npu-smi \
       -v /usr/local/sbin:/usr/local/sbin \
       -v /root/xxx/mindformer_share/:/home/xxx_share \
       -v /tmp:/tmp \
       -v /etc/hccn.conf:/etc/hccn.conf \
       -v /usr/share/zoneinfo/Asia/Shanghai:/etc/localtime \
       -e http_proxy=$http_proxy \
       -e https_proxy=$https_proxy \
       swr.cn-central-221.ovaijisuan.com/dxy/mindie:1.0.RC1-800I-A2-aarch64

上面-v /root/xxx/mindformer_share/:/home/xxx_share是在映射我的磁盘进容器,需要根据自己的环境做修改。

进入容器:

docker exec -it my_mindie  bash

进入之后执行环境设置:

source /usr/local/Ascend/ascend-toolkit/set_env.sh
source /usr/local/Ascend/mindie/set_env.sh

修改服务配置

上述操作做完,就可以修改mindie-service的配置文件了,这个文件位于/usr/local/Ascend/mindie/latest/mindie-service/conf/config.json。

"ipAddress" : "0.0.0.0",
"port" : 1025,

"ModelDeployParam":
    {
        "maxSeqLen" : 4096,
        "npuDeviceIds" : [[0,1]],
        "ModelParam" : [
            {
                "modelName" : "baichuan2",
                "modelWeightPath" : "/home/xxxx/baichuan-inc/Baichuan2-13B-Chat/",
                "worldSize" : 2,
                "cpuMemSize" : 5,
                "npuMemSize" : 10,
                "backendType": "atb"
            }
        ]
    },

我这里罗列下我关注的字段。

  • ipAddress和port是监听网络和地址
  • modelName是tritton-url请求里要用的字段,需要记下来
  • npuDeviceIds指定用哪几张卡
  • worldSize是使用npu的数量,必须与npuDeviceIds中的卡数一致
  • modelWeightPath模型路径
  • maxSeqLen最大长度

启动服务

cd /usr/local/Ascend/mindie/latest/mindie-service/
bin/mindieservice_daemon

如何使用服务

可以用postman或者python接口调用http服务。

POST  http://223.106.234.6:2250/generate

{
 "prompt": "你是谁?\n",
 "max_tokens": 1024,
 "repetition_penalty": 1.03,
 "presence_penalty": 1.2,
 "frequency_penalty": 1.2,
 "temperature": 0.5,
 "top_k": 10,
 "top_p": 0.95,
 "stream": false
}

mindie支持openai\triton\vllm等接口。具体可参考文档 这里

参考资料

MindIE是什么

昇腾docker镜像仓库

<think>好的,我现在需要帮助用户了解如何在昇腾服务器上部署SenseVoice。首先,我需要理解用户的问题和要求。用户提到了昇腾服务器、部署SenseVoice,以及相关的文档或指南。根据用户提供的引用,有三个参考来源,其中引用[1]和[2]涉及MindIE Service开发指南和镜像更新,引用[3]是关于升腾国产化云电脑服务器的部署手册。 首先,我需要确认SenseVoice是否与昇腾的MindIE服务或其他昇腾组件兼容。根据引用[1],昇腾社区提供了服务化接口的指南,可能涉及如何集成和部署服务。引用[2]提到MindIE镜像的更新和部署vLLM的步骤,可能涉及到容器化部署,比如使用Docker。引用[3]则是关于云电脑服务器的部署手册,可能包含硬件配置和基础环境设置的指导。 接下来,我需要考虑部署SenseVoice的一般步骤。通常,部署AI模型或服务需要以下步骤:环境准备(包括硬件驱动、固件、软件依赖)、获取模型或服务代码、配置参数、启动服务并进行测试。针对昇腾服务器,可能需要使用昇腾AI处理器(如Ascend 910)和配套的软件栈,如CANN(Compute Architecture for Neural Networks)和MindSpore框架。 根据引用[2],MindIE镜像已经更新,用户需要安装新的Docker镜像并启动相关服务。这可能意味着部署SenseVoice需要基于昇腾的容器镜像来构建环境。此外,引用[1]中的服务化接口指引可能提供API集成的方法,帮助将SenseVoice服务化。 可能的问题点包括:昇腾服务器是否支持SenseVoice所需的依赖库,如何配置容器环境,如何获取和加载SenseVoice的模型文件,以及如何进行服务化部署。用户可能需要参考昇腾的官方文档,特别是MindIE Service开发指南,以及相关的部署手册。 需要提醒用户注意镜像版本和文档的更新情况,如引用[2]提到官网文档被删除,建议使用新版镜像和相关资源。此外,部署过程中可能需要处理硬件兼容性、驱动安装、网络配置等问题,这些在引用[3]的部署手册中可能有详细说明。 总结部署步骤可能包括: 1. 准备昇腾服务器硬件环境,安装驱动和CANN工具包。 2. 获取并配置合适的Docker镜像(如MindIE镜像)。 3. 下载SenseVoice模型和相关代码,并集成到容器环境中。 4. 配置服务化接口,参考MindIE Service开发指南。 5. 启动服务并进行验证测试。 需要生成的相关问题可能涉及昇腾服务器的环境配置、容器化部署的具体步骤、服务化接口的使用方法,以及故障排除等。用户可能需要进一步查阅昇腾社区文档或联系技术支持以解决具体问题。</think>### 昇腾服务器部署 SenseVoice 指南 #### 1. 环境准备 - **硬件要求**:确保昇腾服务器搭载昇腾AI处理器(如Ascend 910),并安装最新驱动和固件[^3]。 - **软件依赖**: - 安装昇腾CANN工具包(版本需与硬件兼容)。 - 配置Python环境(推荐Python 3.7+)和MindSpore框架[^1]。 - 安装Docker引擎(若使用容器化部署)[^2]。 #### 2. 获取部署资源 - **MindIE镜像**:从昇腾社区下载最新MindIE镜像(包含昇腾优化的运行环境)。 ```bash docker pull [昇腾官方镜像仓库地址]/mindie:latest ``` - **SenseVoice代码与模型**: - 从昇腾ModelZoo或厂商提供的渠道获取适配昇腾的SenseVoice模型文件。 - 下载服务代码仓库(需支持昇腾NPU加速)。 #### 3. 容器化部署步骤 - **启动MindIE容器**: ```bash docker run -it --device=/dev/davinciX \ # 挂载昇腾设备 -v /path/to/SenseVoice:/app \ # 挂载代码与模型 -p 8080:8080 \ # 服务端口映射 [镜像名称] /bin/bash ``` - **安装依赖**: ```bash pip install -r /app/requirements.txt # 安装SenseVoice所需依赖 ``` #### 4. 服务配置与启动 - **修改配置文件**: - 在`config.yaml`中指定模型路径、昇腾NPU参数及服务端口。 ```yaml hardware: "ascend" model_path: "/app/models/sensevoice.om" # 昇腾离线模型格式 port: 8080 ``` - **启动服务**: ```bash python /app/service.py --config config.yaml ``` #### 5. 验证与测试 - 发送测试请求(示例使用`curl`): ```bash curl -X POST http://localhost:8080/inference \ -H "Content-Type: application/json" \ -d '{"audio_path": "/app/data/test.wav"}' ``` - 预期返回语音识别或合成结果,如状态码`200`表示成功。 #### 注意事项 - 若需分布式部署,参考昇腾《威讯云超融合文档》设计网络拓扑。 - 性能优化可启用昇腾AI调优工具(如msame、profiling工具)。
评论 10
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值