如何提升连带消费?从新零售“人-货-场”模型拆解

目录

一、分析背景

二、新零售分析思路和分析方法

1.具体分析思路

2.分析方法

三、新零售“人-货-场”分析的实操步骤

1.数据收集

2.数据处理

3.图表制作

四、总结


想让线上引来的顾客,在店里多买几件?

连带消费可是实体店赚钱的“秘密武器”!

尤其在新零售时代,线下体验更重要。

怎么让顾客从线上到店里后,再顺手带点别的?这招学会了,业绩蹭蹭涨!

今天给大家分享的这个实战好方法,用新零售最火的“人-货-场”模型,手把手教你分析连带消费,帮你省时省力做方案,效果还更好!赶紧往下看,干货满满!

特此声明,此案例由【简小凡】制作,参加了2022BI数据分析大赛,并获得了优异的成绩,案例的思路清晰、方法落地,非常值得大家参考和学习!

开始讲方法论之前,先给大家分享一本《零售行业数字化场景手册》,包含电商、门店管理、精益生产、供应链等多种场景,有需要的可以看一下:帆软消费场景行业手册 - 帆软数字化资料中心(复制到浏览器打开)

一、分析背景

现在消费观念在变,大家的需求也跟以前不一样了,再加上疫情的影响,实体店想继续好好做下去,就得跟上新零售的潮流,这基本上是唯一的路了。

新零售模式里:

  • 实体店可以靠小程序,把线上线下各种场景结合起来
  • 再用点线上的运营办法,把人引到店里来

这样能:

让更多人成为会员,会员也更愿意再来买东西,店里的生意自然就好起来了。

问题来了:

跟天猫、蜜芽这些纯线上的地方不一样,母婴店搞的 “线上零售” 只是跟用户多了个接触的途径,没法完全代替线下门店的体验。

你看数据就知道:

线上卖的钱比线下门店少多了。

所以对母婴店来说:

靠新零售把人引到线下,让他们到店里再来买一次,更能提高业绩。

听着是不是很熟?很多店其实都是这样,线下的体验还是很重要的。

在这种情况下:

客户运营部经常会给客户出些新零售的运营方案,帮他们多赚钱。

但问题是:

出这些方案可不是件容易事。

  • 每次都得从客户的系统里导数据出来分析,这要花好多人力和时间。
  • 而且客户在全国各地都有,每个地方情况不一样,之前的方案拿到别的地方用,效果就不好,复用性很低。

所以:

客户运营部就希望数据分析团队能做一个固定的报表,帮他们省点事,提高工作效率。

一句话总结,就是客户运营部需要固化报表来解决方案制作耗力且复用性低的问题。

二、新零售分析思路和分析方法

先说为啥要做这个分析:

  • 就是想弄明白线上到线下的消费转化率怎么样,
  • 到店之后顺便买的那些东西对门店业绩贡献有多大,

这是了解现状的关键。从问题出发,才能更好的拆解思路。

1.具体分析思路

先看

  • 哪些场景
  • 哪些商品
  • 哪些客户群体

到店连带消费的效果最好。

具体来说就是:

  • 对于不同的客户,该选什么样的客群、场景和商品搭配;
  • 对于不同的商品,又该怎么选对应的客群和场景。

这些都是实打实要解决的问题。

那这个报表是给谁用、在什么情况下用呢?

需求方很明确,就是:

  • 客户运营部
  • 品牌营销部

使用场景主要有三个:

  • 第一个是能看到新零售连带消费的整体数据情况;
  • 第二个是平台搞活动或者品牌投放资源的时候,能帮着选合适的区域和客户群;
  • 第三个就是给单个客户做新零售运营方案的时候用。

2.分析方法

整体思路是结合 5W2H“人 - 货 - 场” 来拆解前面说的三个问题,搭建分析看板。

  • 先通过公式拆解找到核心指标,描述清楚现状。
  • 然后针对 “人 - 货 - 场” 一个个拆开来分析。

这套看板的全套分析模板我都给大家整理好了,需要自取:免费试用FineBI模板(复制到浏览器打开)

具体方法有这么几种:

  • 对比分析法,就是看看数据整体有多大、随时间变化的趋势,再从不同维度比一比。
  • 漏斗模型,主要是看人群是怎么一步步转化的。
  • ABC 分析,能找出最核心的那些对象。
  • 波士顿矩阵分析,可以帮着找到合适的城市和商品。
  • 品类关联分析,参考购物篮分析系数,能找出好的商品组合。
  • TOP 分析,就是找到那些卖得最好的头部品牌。

这些方法组合起来用,分析才能更透彻。

比如:

  • 用对比分析法,能清楚看到不同区域线上到线下的转化率差异,时间久了还能看出趋势变化。
  • 用漏斗模型,能知道从线上吸引来的人,到进店、再到消费,每一步都有多少人留下来了。
  • ABC 分析,能快速定位到那些对业绩贡献最大的核心客群、商品或场景。

关键点:

运营方案的差异主要就在为客户目标客群选合适商品,用新零售工具组合触达会员促成转化。

所以选品要:

和品牌营销部沟通,匹配上游品牌资源。

反过来想:

当品牌要投放资源时,这个报表就能帮着匹配合适的区域、客群和场景。

三、新零售“人-货-场”分析的实操步骤

其实很多零售企业不是不知道怎么开始,而是一开始就想得太复杂,反而动不了手。

其实你真想干,四步走就够了:

1.数据收集

这次分析用的是企业数据,已经做了脱敏处理。

按照之前的分析框架,咱们需要的数据集有5部分:

  • 订单
  • 流量
  • 会员
  • 微信场景
  • 城市等级

具体的指标口径,我附了图,一看就明白。

2.数据处理

以基础表 - 订单商品明细数据处理为例,给大家讲一下数据怎么处理的。

咱们先明确一下连带消费的定义:线上订单到线下核销后当天产生的订单。

有两种情况:

  • 一种是支付当天到线下核销,然后产生连带消费订单;
  • 另一种是支付后过了几天到线下核销,再产生连带消费订单。

不过这里有个问题:

线上支付订单和连带消费订单是多对多的关系

而且:

这次分析做的看板要支持自定义时间查询,所以订单商品行的金额数据得做均摊处理。

数据处理过程是这样的:

  • 先拿到前置订单和它的核销日期,也就是线上订单,
  • 再拿到关联的订单,也就是核销日期当天的线下订单。
  • 生成一个新表,算出这两个表订单的重复次数,关联规则是 “线上订单的核销日期等于线下订单的支付日期,而且线下订单的支付时间要比线上订单的核销时间晚”。
  • 把两个表的订单支付金额均摊,这样就能解决看板计算时订单重复的问题。

怎么计算呢?

前置订单支付金额均摊就是前置订单支付金额除以它的重复次数,关联订单支付金额均摊也是同样的道理。

然后:

订单数据会把会员属性和客户属性信息通过 SQL 处理好,导出到 EXCEL,再上传到 FineBI。

3.图表制作

  • 对于同类型的组件,比如指标卡,在组件编辑界面切换数据集,这样能提高效率。​
  • 漏斗图的转化率展示,通过 TAB 组件把 “漏斗图” 和 “转化率指标卡” 合并在一起,这样就能解决不好通过数据集处理自定义时段的漏斗筛选转化率的问题。​
  • 可以通过 “闪烁”“警戒线”“注释” 来突出重要信息。​
  • 通过标签的 “最大、最小值” 减少标签元素的视觉干扰。​

这里重点说一下联动效果处理

先取消默认联动,等整体看板制作完成后,根据每个组件的联系和整体分析思路来调整。

比如:

看板默认展示 1 个月的数据,想点击其他组件的维度查看该维度下 “近一年时间趋势”,这时候就要改动相关组件的联动关系了,具体可以看下图。

四、总结

用好“人-货-场”这三招,分析连带消费其实没那么难!

这个获奖案例的方法,核心就是找准人、配好货、用对场景。

从理清思路→处理数据→做出实用看板,一步步都讲清楚了。

最后的关键是把数据变成能用的方案,让你知道该吸引谁、推什么商品、在什么场景下发力,才能真正让顾客多买点。

别再为零售头疼了,照着这个思路走,你也能轻松提升连带消费!

### 从零开始训练 YOLOv8-obb 模型(不使用预训练权重) 要在不使用预训练权重的情况下从零开始训练 YOLOv8-obb 模型,需要按照以下步骤操作: ### 1. **准备环境与依赖** 首先,确保安装了必要的库和依赖项。YOLOv8-obb 基于 Ultralytics 框架,因此需确保已安装 `ultralytics` 包。如果尚未安装,可以通过以下命令安装: ```bash pip install ultralytics ``` 此外,确保 Python 版本为 3.8 或更高,并安装必要的依赖库,如 `torch`、`opencv-python` 等。 ### 2. **配置数据集** 需要将数据集转换为 YOLOv8-obb 所需的格式。通常,YOLOv8-obb 要求数据集以 `.txt` 文件形式存储每个图像的标注信息,每行包含类别编号和 8 个坐标值(即旋转框的 4 个顶点坐标)。 对于 DOTA 数据集,可以使用 `convert_dota_to_yolo_obb.py` 脚本进行转换。需要根据实际类别修改 `class_mapping` 字典,例如: ```python class_mapping = { "plane": 0, "baseball-diamond": 1, "bridge": 2, "ground-track-field": 3, "small-vehicle": 4, "large-vehicle": 5, "ship": 6, "tennis-court": 7, "basketball-court": 8, "storage-tank": 9, "soccer-ball-field": 10, "roundabout": 11, "harbor": 12, "swimming-pool": 13, "helicopter": 14, } ``` 转换完成后,确保数据集目录结构符合 YOLOv8-obb 的要求,通常包括 `images` 和 `labels` 两个文件夹,分别存放图像和标注文件[^4]。 ### 3. **创建并配置数据集配置文件** 创建 `dota8-obb.yaml` 文件,用于指定数据集路径、类别数量和类别名称。该文件的示例如下: ```yaml train: ./path/to/train/images val: ./path/to/val/images nc: 15 # 类别总数 names: ['plane', 'baseball-diamond', 'bridge', 'ground-track-field', 'small-vehicle', 'large-vehicle', 'ship', 'tennis-court', 'basketball-court', 'storage-tank', 'soccer-ball-field', 'roundabout', 'harbor', 'swimming-pool', 'helicopter'] ``` ### 4. **修改 YOLOv8-obb 模型配置** YOLOv8-obb 的模型配置文件通常为 `yolov8n-obb.yaml`,其中定义了网络结构和超参数。为了从零开始训练,需要确保该文件中 `pretrained` 参数设置为 `False`,并且 `nc`(类别数量)与数据集配置文件中的一致。 例如,在 `yolov8n-obb.yaml` 中修改以下部分: ```yaml # Model parameters nc: 15 # 类别数量 depth_multiple: 0.33 # 模型深度缩放因子 width_multiple: 0.50 # 模型宽度缩放因子 ``` 此外,确保 `backbone` 和 `head` 部分的结构定义正确,符合 YOLOv8-obb 的要求。 ### 5. **编写训练脚本** 创建一个 Python 脚本用于启动训练过程。该脚本应使用 `YOLO` 类从 `ultralytics` 模块加载模型配置,并指定训练参数。由于不使用预训练权重,模型将从头开始训练: ```python from ultralytics import YOLO def main(): # 从 YAML 文件加载模型配置,不加载预训练权重 model = YOLO('yolov8n-obb.yaml') # 直接从 YAML 文件构建模型 model.train(data='dota8-obb.yaml', epochs=100, imgsz=640, batch=4, workers=4) if __name__ == '__main__': main() ``` ### 6. **训练模型** 运行上述脚本后,训练过程将开始。训练过程中,模型将根据指定的 `epochs` 数量进行迭代,并在每个 epoch 后保存最佳模型权重。训练日志和权重文件将默认保存在 `runs/obb/train/` 目录下。 ### 7. **验证模型性能** 训练完成后,可以通过以下脚本验证模型的性能: ```python from ultralytics import YOLO def main(): # 加载训练得到的最佳模型权重 model = YOLO(r'runs/obb/train/weights/best.pt') model.val(data='dota8-obb.yaml', imgsz=1024, batch=4, workers=4) if __name__ == '__main__': main() ``` 该脚本将加载训练过程中保存的最佳权重,并在验证集上评估模型性能,输出 mAP、召回率等指标[^2]。 ### 8. **推理与部署** 完成训练和验证后,可以使用训练好的模型进行推理。例如,对单张图像进行预测: ```python from ultralytics import YOLO def main(): model = YOLO(r'runs/obb/train/weights/best.pt') results = model('path/to/image.jpg', save=True, imgsz=1024, conf=0.5) if __name__ == '__main__': main() ``` 该脚本将对指定图像进行推理,并保存带有检测框的结果图像。 --- ###
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Leo.yuan

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值