目录
销售分析做得再细,为啥还是总在 “救火”?
你看啊,生产线上急着缺料、仓库里货堆得满当、促销最后变成清仓、爆款想买却抢不到……
这些让销售、生产还有老板都头疼的事儿,光靠看过去的销售数据,真的不够。
关键就在于缺了 “需求预测” 这环!需求预测是供应链的第一道防线,供应链80%的问题在于预测做不好。
因为销售分析的本质是解读已经发生的事,它能说清楚 “昨天” 的情况:
- 哪些区域超额完成任务了?
- 哪些单品卖得不好,滞销了?
- 促销活动当时的转化效果怎么样?
这些发现当然有用,但要是就停在这一步,那可就不够了。
真正的业务决策是要着眼未来的:
- 下个月该生产多少?
- 要备多少原料?
- 运力怎么调配?
- 促销资源往哪儿投?
这些问题,光看过去的销售数据可找不到答案,得靠对未来需求的准确判断。
一、需求预测面临的痛点
不懂预测未来的需求,销售分析做得再漂亮,也带不动业务增长。但需求预测常常会面临这些痛点:
1.数据杂乱且不全
做需求预测要到处找这些数据:
- 销售数据在 ERP 系统里,
- 发货明细在物流系统里,
- 促销活动记录在 OA 审批单里,
- 竞品动态又散在各种行业报告里。
更麻烦的是:
很多企业连基础的 “数据字典” 都没有。
就说 “销量” 这个词:
- 有的系统统计的是 “下单量”,
- 有的是 “实际发货量”,
- 还有的是 “结算完成量”。
数据标准都不统一,怎么能做好预测呢?
2.预测工作量太大
需要预测的节点越来越多:
- 从总部到区域,
- 从季度到周度,
- 从品类到 SKU。
当数据量超过人工处理能力的时候,预测结果就只能靠 “拍脑袋” 了。
比如:
凭经验觉得 “这个月是旺季,销量涨 10%”,但为什么是 10%?哪些因素影响的?都说不清楚。
3.预测结果不准还难协同
最让人无奈的是,辛辛苦苦做出来的预测,最后没人信、没人用:
- 销售部门说 “预测太保守,压的货卖不动”;
- 生产部门抱怨 “预测太冒进,排产排到崩溃”;
- 财务部门也摇头 “库存周转天数超标,资金链压力大”。
为什么会这样呢?
因为传统的预测只盯着 “历史数据”,却忽略了那些 “动态变化的因素”。
更不合理的是:
很多企业的预测结果和业务计划根本对不上。
- 销售预测说 “下个月 A 产品需要 1000 件”,生产计划却只排了 800 件;
- 采购部门按 800 件下了单,结果到货后发现不够,只能紧急调货。
最后:
企业就陷入了 “缺料赶工→过量库存→紧急调货” 的死循环,利润就这么被折腾没了。
二、需求预测有什么用
不懂需求预测的销售分析,真的很难做好工作:
- 如果说销售分析是看过去的情况,那需求预测就是看未来的趋势;
- 如果说销售分析是算清楚过去卖了多少,那需求预测就是搞明白未来能卖多少。
1. 需求预测能给销售分析指路
真正的销售分析,不只是简单总结 “过去卖得好还是不好”,而是要能回答三个问题:
- 未来能卖多少(需求规模)?
- 什么时候卖(时间分布)?
- 在哪里卖(区域 / 渠道差异)?
而需求预测,就是用数据和模型来回答这三个问题的工具。
具体怎么做?
拿下面这张用大数据分析平台搭建的需求预测看板举例:
- 先依据历史数据,分别从长周期(年、季)和短周期(月、周)维度分析销售趋势,长周期侧重于战略层解决产品策略、产能、规划问题;短周期主要用于指导生产。同时关注品类、订单构成等细节信息。
- 再借助算法评估优化预测模型,结合市场、客户及产存优化情况,对销售与需求进行预测。
- 最后依据预测结果,给出备货、补货建议,并通过计算预测 ROI 回报,验证预测的有效性,从而实现更精准的销售需求预测。
这张需求预测看板也可以直接套用,帮你节约80%的分析时间。模板体验地址无偿分享给大家:免费体验FineBI模板(复制到浏览器打开)
2. 需求预测能让产销协同更顺畅
企业里常出现这样的矛盾:
- 销售说客户要得多,生产说做不出来;
- 生产说做得多,销售又说卖不掉。
需求预测的价值,就是用一套统一的标准,把销售端的市场信号变成生产端能执行的指令。
并且:
销售与需求预测应用可以根据重要程度和波动性来做分析判断,预测结果具有重要的实际指导意义。
三、“精准预测”的解决方案
既然需求预测这么重要,那为什么很多企业做不好呢?
我总结核心原因有两个:
- 一是数据不打通,导致没数据可用;
- 二是预测模型太落后,跟不上业务变化。
解决方案 1:打破数据孤岛,让预测有足够的数据支撑
数据是预测的基础,但很多企业的数据太分散了:
- 销售数据在 ERP,
- 会员数据在 CRM,
- 天气数据在外部 API,
- 促销计划在 OA。
这时候:
企业就得搭建一个统一的大数据分析平台,把这些分散在各个系统的数据清洗、整合、标准化。
解决方案 2:用 AI + 大模型,让预测更精准
传统的预测模型,像移动平均法、指数平滑法,比较依赖经验,面对复杂的因素反应比较慢。而 AI + 大模型的出现,就让预测变得 “聪明” 多了。
简单说下,有个混合预测方法,它基于相关的通用预测大模型,能从 50 多种算法模型(比如 ARIMA、LSTM、Prophet)里自动选出最适合当前业务场景的模型。
比如:
- 对于销量稳定的经典款产品,系统会优先用 “历史趋势 + 季节波动” 的简单模型;
- 对于新品或者受促销影响大的产品,就会用 “机器学习 + 外部变量” 的复杂模型。
更厉害的是 “零样本预测技术”:
- 以前企业推新品,因为没有历史数据,预测只能靠猜。
- 现在,系统可以分析同类产品的销量轨迹、目标客群的社交讨论热度、竞品的市场表现这些 “不那么直接相关的数据”,自动生成新品预测。
四、不同行业有不同的需求预测方法
需求预测不是一刀切的,得根据行业特点来:
1.制造业:做好长周期预测,稳住供应链
制造业的生产周期长,就拿汽车零部件来说,生产可能需要 3 个月。要是预测不准,很容易导致原材料积压或者断供。
这时候,“多层滚动预测” 就很重要:
从年度战略预测(指导产能规划)→季度运营预测(指导原材料采购)→周度执行预测(指导车间排产),一层一层细化。
2.零售商超:做好短周期预测,应对需求变化
超市的商品周转快,像生鲜可能每天都要补货,所以需要 “小步快跑” 的预测模式:
用 “需求感知 + 动态调整” 的方法,每天凌晨根据前一天各门店的实际销量、当天的天气预报、线上平台的促销活动,自动调整当天的补货量。
3.电商:做好大促预测,抓住销售机会
电商的大促,像 618、双 11,流量很大,但对预测也是个考验,爆款可能一下子就卖完了,冷门商品可能没人买。
通过 “历史大促数据 + 实时流量监测 + 用户行为分析” 的组合模型,可以:
- 提前 3 个月分析用户搜索关键词、加购收藏数据,预测大促期间的爆款;
- 大促期间实时监控直播间观看人数、商品点击率,动态调整库存分配。
结语
销售分析的最终目的,是靠预测带动增长。
销售分析,不是解释 “过去发生了什么”,而是回答 “未来会发生什么”,并推动业务提前行动。而需求预测,就是连接 “过去” 和 “未来” 的桥梁。
下次做销售分析时,别只盯着 “这个月卖了多少”,试着问问自己 “下个月,客户到底需要什么”。
当你能精准预测需求时,就能提前稳住供应链、优化库存、制定灵活的销售策略,最后把 “销售的不确定” 变成 “利润的确定”。