Leetcode 70 爬楼梯

本文介绍了如何使用动态规划解决经典的爬楼梯问题,通过状态转移方程dp[i]=dp[i-1]+dp[i-2]计算到达n阶楼顶的阶梯数。给出了一个简单的C++代码实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1. 题目描述

假设你正在爬楼梯。需要 n 阶你才能到达楼顶。
每次你可以爬 1 或 2 个台阶。你有多少种不同的方法可以爬到楼顶呢?

示例 1

输入:n = 2
输出:2
解释:有两种方法可以爬到楼顶。

  • 1 阶 + 1 阶
  • 2 阶

示例 2

输入:n = 3
输出:3
解释:有三种方法可以爬到楼顶。

  • 1 阶 + 1 阶 + 1 阶
  • 1 阶 + 2 阶
  • 2 阶 + 1 阶

2. 我的尝试

非常经典且基础的动态规划问题,状态转移方程为 d p [ i ] = d p [ i − 1 ] + d p [ i − 2 ] dp[i] = dp[i-1] + dp[i-2] d

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值