学习如何打劫的一天。198. 打家劫舍,213. 打家劫舍 II,337. 打家劫舍 III。感觉比背包系列的问题好理解好做一些。
213. 打家劫舍 II
和Ⅰ比较像,只不过换成了环形数组,需要分情况进行讨论,因为首尾不能同时选,但是在Ⅰ中是没有这个限制条件的。一共分三种情况考虑:1.首尾都不选,2.选首不选尾,3.选尾不选首。比如一共5个数,1是考虑中间三个,2和3是考虑前四个或者后四个。但是其实2和3里面包含了1,因为是考虑,不是选择。dp[1] = max(nums[start], nums[start + 1]),如果没有选到在开始的值的时候,那么2就变成了情况1,3也同理,所以只需讨论两种情况就够。
然后就是打家劫舍类型的讨论
- 下标:dp[i]:考虑下标i(包括i)以内的房屋,最多可以偷窃的金额为dp[i]
- 递推公式:
如果偷第i房间,dp[i] = dp[i - 2] + nums[i]
如果不偷第i房间,那么dp[i] = dp[i - 1],即考 虑i-1房,(考虑,并不是一定要偷i-1房)
然后dp[i]取最大值,即dp[i] = max(dp[i - 2] + nums[i], dp[i - 1]);
- 初始化:dp[0] 一定是 nums[0],dp[1]就是nums[0]和nums[1]的最大值即:dp[1] = max(nums[0], nums[1]);
- 遍历顺序:从前向后
class Solution:
def rob(self, nums: List[int]) -> int:
if len(nums) == 0:
return 0
if len(nums) == 1:
return nums[0]
result1 = self.dp(nums, 0, len(nums) - 2)
result2 = self.dp(nums, 1, len(nums) - 1)
return max(result1, result2)
def dp(self, nums, start, end):
if start == end:
return nums[start]
dp = [0] * (end - start + 1)
dp[0] = nums[start]
dp[1] = max(nums[start], nums[start + 1])
for i in range(2, end - start + 1):
dp[i] = max(dp[i - 1], dp[i - 2] + nums[start + i])
return dp[-1]
37. 打家劫舍 III
这道题卡住的主要原因是有点忘了二叉树写法了,感觉思路还是类似的,就是想到了分类讨论,选这个节点的值和不选这个节点的值,但是不太清楚怎么写,因为是有左右两个子节点,所以没法像之前一样按一维的做。
但是看了题解发现还是比较容易理解的,自己太公式人了,稍微偏离点模板都很难做。首先确定树的遍历顺序,后序遍历(左中右),从下往上逐步把数值加到root上,然后就是关键的几个区别,一是树形DP不需要再新建一个DP数组了,利用树的后序遍历方式就是相当于状态转移方程。而是需要建立一个二元组(记住过程中不是不断修改二元组,而是在每个节点保存二元组的状态供上一层参考),然后一个元素代表不偷,一个元素代表偷,当为叶子节点的时候,终止,返回(0,0)。然后就是对树中间节点的讨论,有偷和不偷两种情况,如果偷,则下面的子节点就不能偷了,所以是node.val+left[0]+right[0],left0和right0代表了不偷的收益。如果不偷当前节点,那么肯定偷子节点,就在左右两个子节点分别比较偷和不偷的收益取最大值,然后左右节点相加继续往上传递。
还是要熟悉树的定义,遍历方式会好做一点,这道题套dp模板反而会很僵硬。
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution:
def rob(self, root: Optional[TreeNode]) -> int:
# dp数组(dp table)以及下标的含义:
# 1. 下标为 0 记录 **不偷该节点** 所得到的的最大金钱
# 2. 下标为 1 记录 **偷该节点** 所得到的的最大金钱
dp = self.traversal(root)
return max(dp)
def traversal(self, node):
# 递归终止条件,就是遇到了空节点,那肯定是不偷的
if not node:
return (0, 0)
left = self.traversal(node.left)
right = self.traversal(node.right)
# 不偷当前节点, 偷子节点
val_0 = max(left[0], left[1]) + max(right[0], right[1])
# 偷当前节点, 不偷子节点
val_1 = node.val + left[0] + right[0]
return (val_0, val_1)