06-可用数据集

本文介绍了Scikit-learn库的安装和验证方法,并概述了其在分类、回归、聚类、降维和模型选择等方面的应用。通过实例展示了如何利用Scikit-learn进行特征工程和模型调优,帮助读者掌握这一强大的机器学习工具。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

可用数据集

在这里插入图片描述
学习阶段可用的数据集:

  • sklearn
  • kaggle
  • UCI

Scikit-learn工具介绍

在这里插入图片描述

安装

pip3 install Scikit-learn==0.19.1

安装好之后可以通过以下命令查看是否安装成功

import sklearn

注意:安装scikit-learn需要Numpy, Scipy等库

Scikit-learn包含的内容

在这里插入图片描述
在这里插入图片描述

  • 分类
  • 回归
  • 聚类
  • 降维
  • 模型选择
  • 特征工程

大致可以分为以下三个方面:

  1. 分类、聚类、回归
  2. 特征工程
  3. 模型选择、调优
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值