
机器学习库numpy学习
yuhui_2000
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
15.模拟e^x的麦克劳林展开式
导入第三方库import numpy as npimport matplotlib.pyplot as plt%matplotlib inline# 解决中文乱码plt.rcParams["font.sans-serif"]=["KaiTi"]plt.rcParams["font.family"]="sans-serif"# 解决符号无法显示的问题plt.rcParams['axes.unicode_minus'] = False # 解决保存图像是负号'-'显示为方块的问题e^x原创 2020-11-26 19:35:11 · 18695 阅读 · 1 评论 -
13.数组拷贝
导入第三方库import numpy as npfrom copy import deepcopy直接赋值使用这种方式时,如果我们改变a、b两者中的某一个,另一个也会发生相同的变化,a和b是具有某种链接的关系的。为什么会出现上述的现象呢?可以看见,a和b对应的内存地址是一样的,也就是说a和b指向的是同一个内存地址,那么a和b中只要有一个发生变动,另一个也会发生相同的变动。浅拷贝拷贝之后,a和b指向的是不同的内存地址在这种情况下,a和b之间就不存在某种关联了:如果我们改变a的原创 2020-11-16 19:10:51 · 202 阅读 · 0 评论 -
12.数组分割
导入第三方库import numpy as np等量分割hsplitsplit(axis=1)vsplitsplit(axis=0)splitaxis=1表示横轴;axis=0表示纵轴水平分割第一种方法注意事项注意: 使用np.hsplit(a,x)方法时,一定要保证被分割的矩阵的列数要是x的整数倍,不然的话就不是等量分割了,就会报错。第二种方法垂直分割第一种方法注意事项如果不等量分割会报错第二种方法不等量分割array_spl原创 2020-11-16 18:31:53 · 1336 阅读 · 0 评论 -
11.数组合并
导入第三方库import numpy as np水平合并horizontal stack垂直合并vertical stackconcatenate方法总结水平合并np.hstack((a,b))np.concatenate((a,b),axis=1)垂直合并np.vstack((a,b))np.concatenate((a,b),axis=0)原创 2020-11-16 17:43:36 · 97 阅读 · 0 评论 -
10.遍历数组元素
导入第三方库import numpy as np遍历数组元素数组其实就类似于是多重列表(列表中镶嵌着列表),在遍历多重列表的时候,我们是通过层层循环的方式遍历列表。遍历行第一种方法第二种方法遍历列将数组转置的方法第一种方法第二种方法遍历数组中的每一个元素打平数组法一法二法三Tips获取所有的行将数组转置第一种方法第二种方法打平数组(将多维数组降成一维)第一种方法第二种方法arr.flatten()和arr.flat的原创 2020-11-16 17:09:54 · 642 阅读 · 0 评论 -
9.访问数组元素
导入第三方库import numpy as np下标numpy中,我们可以像访问普通数组一样用下标来访问ndarray中的元素,比如:a[0][0](第1行第1列)、a[1][1](第2行第2列)通用格式1使用两个[](中括号)不使用切片a[x][y]a[]使用一个切片使用两个切片举例numpy通过索引访问数组元素a[1,:]第2行所有的元素a[:,1]第2列所有的元素a[1,1:3]第2行的、第2~3列元素...原创 2020-11-16 16:24:45 · 885 阅读 · 0 评论 -
14.numpy实现正态分布
正态分布https://baike.baidu.com/item/%E6%AD%A3%E6%80%81%E5%88%86%E5%B8%83/829892?fr=aladdin概率密度函数代码实现import numpy as npfrom numpy import randomimport matplotlib.pyplot as plt%matplotlib inline# 解决中文乱码plt.rcParams["font.sans-serif"]=["KaiTi"]p原创 2020-11-13 22:47:33 · 3449 阅读 · 1 评论 -
属性
来源https://www.bilibili.com/video/BV1Ka4y1E7YB?from=search&seid=5057671469711605653目录原创 2020-11-13 22:25:28 · 92 阅读 · 0 评论 -
2.numpy的介绍
numpy库是做什么的?numpy是使用python进行科学计算的基础软件包numpy主要是用于大数据量的同构数组处理,以及数组操作函数、科学计算函数和线性代数等同构:数据类型一致,同为int或者是同为floatnumpy数组核心numpy的结构是同构的ndarray(n维数组)numpy库和pandas库的关系NumPy:大数据量的同构数组处理,以及复杂函数和线性代数等Pandas:处理非纯粹的、混杂数组虽然NumPy有着种种出色的特性,其本身则难以独支数据分析这座大厦,这是一方原创 2020-11-13 22:11:36 · 228 阅读 · 0 评论 -
8.常用函数
导入第三方库import numpy as npnumpy中的常用函数常用函数sin三角函数及反三角函数sqrt求平方根sorttranspose返回矩阵的转置矩阵max求最大值和求最小值(min)mean(average)summedian中位数var方差std标准差cumsum累加np.clip(arr,5,9)对于数组arr中的每一个元素,小于5的数全部让它变为5,大于9的数全部变成9sin小结三角函数np.sin(arr)np.cos原创 2020-11-13 20:55:00 · 269 阅读 · 0 评论 -
7.3.随机种子
导入第三方库以及相关设置import numpy as npfrom numpy import randomimport matplotlib.pyplot as plt%matplotlib inline# 解决中文乱码plt.rcParams["font.sans-serif"]=["KaiTi"]plt.rcParams["font.family"]="sans-serif"# 解决符号无法显示的问题plt.rcParams['axes.unicode_minus'] = Fa原创 2020-11-13 18:42:24 · 2864 阅读 · 1 评论 -
7.2.生成随机数-正态分布
导入第三方库以及相关设置import numpy as npfrom numpy import randomimport matplotlib.pyplot as plt%matplotlib inline# 解决中文乱码plt.rcParams["font.sans-serif"]=["KaiTi"]plt.rcParams["font.family"]="sans-serif"# 解决符号无法显示的问题plt.rcParams['axes.unicode_minus'] = Fa原创 2020-11-13 17:47:36 · 1187 阅读 · 0 评论 -
7.1.生成随机数-均匀分布
导入第三方库以及相关设置import numpy as npfrom numpy import randomimport matplotlib.pyplot as plt%matplotlib inline# 解决中文乱码plt.rcParams["font.sans-serif"]=["KaiTi"]plt.rcParams["font.family"]="sans-serif"# 解决符号无法显示的问题plt.rcParams['axes.unicode_minus'] = Fa原创 2020-11-13 17:07:09 · 3524 阅读 · 1 评论 -
6.基本计算
导入numpy第三方库import numpy as np基本计算numpy中的ndarray对象重载了很多的运算符,使用这些运算符可以完成矩阵间对应元素的运算:+,-,*(内积),/,%,**(次方),@(矩阵乘法)...原创 2020-11-12 21:07:58 · 106 阅读 · 0 评论 -
5.常用属性
导入numpy第三方库import numpy as np常用属性numpy的多维数组的常用属性:dtype(数据类型)ndim(维度)shape(形状)size(元素个数)查看arr的常用属性设置属性的值原创 2020-11-12 20:41:55 · 85 阅读 · 0 评论 -
4.3.n维数组的创建(特殊数组)
导入numpy第三方库import numpy as np # 导入numpy创建特殊数组numpy中常用的特殊矩阵:ones(全1)zeros(全0)eye(单位矩阵)empty(未初始化的矩阵)ones(全1)zeros(全0)eye(单位矩阵)empty(未初始化的矩阵)...原创 2020-11-12 20:07:25 · 124 阅读 · 0 评论 -
4.2.n维数组的创建(其他常用方法)
导入numpy第三方库import numpy as np # 导入numpyarange方法为了创建数字组成的数组,numpy提供了一个类似于python中的range的函数arange相当于是np.array(list(range()))range:创建数字列表arange:创建数字数组等差数列:linspace方法line space等比数列:logspacelog space:对数刻度均匀分布...原创 2020-11-12 19:47:41 · 360 阅读 · 0 评论 -
4.1.n维数组的创建(array方法)
导入第三方库numpyimport numpy as np # 导入numpy创建n维数组(array方法)numpy的核心就是同构的n维数组# 一维数组arr1=np.array([1,2]) # 传入一个列表print(arr1)# 二维数组arr2=np.array([[1,2,3,4],[2,3,4,5]]) # 大列表中嵌套着2个小列表# print(arr2)# 三维数组arr3=np.array([[1,2,3,4],[2,3,4,5],[3,原创 2020-11-12 17:41:17 · 871 阅读 · 0 评论 -
3.numpy的安装及引入
numpy的安装在python中安装numpy打开cmd在cmd中输入pip install -i https://pypi.tuna.tsinghua.edu.cn/simple numpy回车确定没有报错即表示安装成功在Anaconda中安装numpyAnaconda自带numpy库,无需安装numpy的引入打开python编辑器,输入import numpy这样就成功导入了numpy第三方库...原创 2020-11-12 17:07:47 · 550 阅读 · 0 评论 -
1.课程介绍
课程介绍numpy是机器学习中经常使用到的库,本课程讲解numpy库里面非常常用的操作,不常用对的操作到时需要查手册即可,不常用的操作讲多了会增加我们的学习负担。本课程分为两个部分,第一部分是基础知识部分,第二部分是一些简单的numpy在机器学习中的使用的实例,通过实例,我们可以更好地掌握numpy。如何查手册官网:https://numpy.org/中文网站:https://www.numpy.org.cn/...原创 2020-11-12 16:37:11 · 91 阅读 · 0 评论