多种伸缩模式灵活应对不同场景
-
动态模式:基于实时监控指标(如CPU使用率、内存使用率、网络流量等)自动调整ECS实例数量,适用于业务量波动较大且难以预测的场景,如电商促销、新闻热点引发的流量突增等。
-
定时模式:根据业务的规律性波动创建定时任务,在特定时间自动增加或减少实例,适合业务高峰可预测的应用。
-
健康检查模式:自动检测实例的健康状态,当发现不健康实例时,自动替换,确保业务稳定性,适用于对系统可用性要求较高的场景。
-
混合模式:将定时任务与动态模式结合,先根据业务高峰规律预设基础资源,再通过动态模式应对额外的流量波动,实现更精细的资源管理。
多样化的伸缩策略满足精细管理需求
-
优先级策略:弹性伸缩会优先在高优先级可用区或实例规格进行扩缩容,若无法满足再自动切换到次优先级,保障关键业务的资源需求。
-
均衡分布策略:在多个可用区均衡分布实例,提升系统的可用性和容灾能力,避免因单个可用区故障导致业务中断。
-
成本优化策略:当配置多个实例规格时,系统优先创建单位计算能力成本最低的实例,自动移出成本最高的实例,有效降低成本。
-
实例移出策略:可选择移出最早伸缩配置对应的实例或最早、最新创建的实例,灵活管理实例移出逻辑。
灵活的实例配置与资源管理
-
多实例规格匹配:支持配置多个ECS实例或ECI实例规格,满足不同业务负载对资源的差异化需求,提高扩容成功率。
-
抢占式实例结合:利用抢占式实例的低成本优势,结合普通按量付费实例,构建混合计算集群,在控制成本的同时保障业务的稳定性。
-
垂直伸缩补充:除通过增加实例数量横向扩展外,还可根据业务需求调整现有实例规格(如升级或降级实例配置),实现更灵活的资源适配。
丰富的应用场景适配
-
应对突发流量:在新闻热点、电商促销等场景下,通过报警任务或动态模式,快速增加实例数量,从容应对突发大流量,保障用户体验。
-
规律性业务波动:针对有固定业务高峰的场景,如视频公司每周五20:00的热门节目时段,定时任务可提前自动扩容资源,精准匹配业务需求。
-
业务稳定性保障:对需全天运作且业务量相对稳定的业务支撑系统,健康检查模式可及时替换不健康实例,确保业务不间断运行。
-
混合业务场景优化:对于日常业务量波动不明显但存在周期性波动的复杂业务场景,可将包年包月实例与弹性伸缩结合,先手动加入基础资源,再通过报警任务动态调整实例数量,实现经济稳定的资源管理。
易用性与与其他产品无缝集成
-
简单配置与操作:通过阿里云控制台、API或CLI等方式,可快速创建和管理伸缩组、配置伸缩规则,无需复杂编程,降低使用门槛。
-
与负载均衡(SLB)协同:新增实例会自动加入SLB,实现流量的自动分配;减少实例时,SLB会自动移除对应实例,确保流量调度的准确性和高效性。
-
与RDS融合:在实例扩缩容时,自动更新RDS访问白名单,保障数据库访问的稳定性和安全性,减少手动配置的工作量和出错概率。
-
支持容器服务:在容器服务Kubernetes中,可实现Pod的弹性伸缩,结合阿里云的弹性伸缩功能,为容器化应用提供更灵活的资源管理。
智能预测与自动化扩缩容
伸缩组提供预测未来资源需求的功能,通过配置预测规则,系统会根据历史数据和流量趋势,提前生成定时计划并自动执行扩缩容任务。在使用过程中,可先选择“只预测不伸缩”模式验证预测准确性,待确认满足业务需求后,再开启“预测并伸缩”模式,实现智能化的资源管理。