[LeetCode 204] Count Primes(Python)

本文介绍了一种高效的算法来计算小于非负数n的素数个数。通过使用辅助数组标记2到n的平方根之间的所有倍数,最终遍历数组以计算素数总数。此外,还提供了一个更高效的方法来判断一个数是否为素数。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目描述

Count the number of prime numbers less than a non-negative number, n.

思路

开辟一个辅助数组,依次标记2n的所有倍数。最后遍历该数组,计数素数。

代码

class Solution(object):
    def countPrimes(self, n):
        """
        :type n: int
        :rtype: int
        """
        if n is None or n <= 1:
            return 0
        tmp = [True] * n
        tmp[0] = False
        tmp[1] = False

        i = 2
        while i * i < n:
            if tmp[i]:
                j = i
                while j * i < n:
                    tmp[i * j] = False
                    j += 1
            i += 1

        res = 0
        for k in tmp:
            if k:
                res += 1
        return res

复杂度分析

时间复杂度O(nlglgn),空间复杂度O(n)

如何判断一个数是否为素数

  • 法一
    遍历2n1,看是否有数字能整除n。时间复杂度O(n)
  • 法二
    遍历2n,看是否有数字能整除n。时间复杂度O(logn)
  • 法三
    大于等于5的素数一定和6的倍数相邻。
    x1...,6x1,6x,6x+1,6x+2,6x+3,6x+4,6x+5,6(x+1),...,除6x16x+1都一定不是素数(因为都能找到约数)。那么我们就可以以6为步长,只判断6的倍数左右两侧的数,加快速度。

    class Solution:
    """
    @param: head: a ListNode
    @return: a ListNode
    """
    
    def isPrime(self, n):
        if n is None or n < 2:
            return False
        if n == 2 or n == 3:
            return True
        if n % 6 != 1 and n % 6 != 5:
            return False
        i = 5
        while i * i <= n:
            if n % i == 0 or n % (i + 2) == 0:
                return False
            i += 6
        return True
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值