OpenCV第三发:人脸识别类。

刚刚开始,觉得有趣,心太急想要继续深入研究,,花费一个小时网上查代码,组织,测试,终于出了个人脸识别代码。欧耶!

在OopenCV的开发包中有线程的训练文件XML,E:\opencv\sources\data可以直接拿来做测试使用。如果想要更深入的进入计算机视觉圈子,那么以后这个xml文件需要自己去学习如是训练。今天就做一个测试,建立了三个线程,两个显示 结果,一个检测。

#include <iostream>
#include <string>
#include <thread>
#include <Windows.h>
#include <opencv2\opencv.hpp>
#include<opencv2/imgproc/imgproc.hpp>
#include<opencv2/highgui/highgui.hpp>

using namespace cv;
using namespace std;
int eyeNum = 0;
int faceNum = 0;

void thread01()
{
	Mat image, image_gray;      //定义两个Mat变量,用于存储每一帧的图像
	VideoCapture capture(0);    //从摄像头读入视频

	while (TRUE) {

		capture >> image;     //读取当前这一个张图像

		cvtColor(image, image_gray, CV_BGR2GRAY);//把图像转为灰度图,因为一般图像处理都是处理灰度图像
		equalizeHist(image_gray, image_gray);   //增加对比度方的函数
		CascadeClassifier eye_Classifier;       //眼睛的分类器
		CascadeClassifier face_cascade;        //脸的分类器

		if (!eye_Classifier.load("D:\\opencv\\data\\haarcascades\\haarcascade_eye.xml"))
		{
			cout << "加载失败了,骚年。" << endl;		
		}

		if (!face_cascade.load("D:\\opencv\\data\\haarcascades\\haarcascade_frontalface_alt2.xml"))
		{
			cout << "加载失败了,骚年。" << endl;
		}

		//vector 是个类模板 需要提供明确的模板实参 vector<Rect>则是个确定的类 模板的实例化
		vector<Rect> eyeRect;
		vector<Rect> faceRect;

		//检测关于眼睛部位位置
		eye_Classifier.detectMultiScale(image_gray, eyeRect, 1.1, 2, 0 | CV_HAAR_SCALE_IMAGE, Size(30, 30));//检测
		for (size_t eyeIdx = 0; eyeIdx < eyeRect.size(); eyeIdx++)
		{	//记录检测到几只眼睛
			eyeNum = eyeRect.size();
			//显示位置
			rectangle(image, eyeRect[eyeIdx], Scalar(0, 0, 255));  
		}

		//检测关于脸部位置
		face_cascade.detectMultiScale(image_gray, faceRect, 1.1, 2, 0 | CV_HAAR_SCALE_IMAGE, Size(30, 30));//检测
		for (size_t i = 0; i < faceRect.size(); i++)
		{	//记录检测到几张脸
			faceNum = faceRect.size();
			//显示位置
			rectangle(image, faceRect[i], Scalar(0, 0, 255)); 
		}

		imshow("人脸识别图", image);    //显示一下当前这一张图片
		char c = waitKey(25);         //延时30ms,即每秒播放33帧图像
		if (c == 23)  break;
	}
}
void thread02()
{
	while (true)
	{
		//在控制台显示检测结果
		cout << "一共检测出 "<< eyeNum <<" 个眼睛。" << endl;
		//暂停一下,不然一直刷新,刷新
		Sleep(1000);
	}	
}

void thread03()
{
	while (true)
	{   //在控制台显示检测结果
		cout << "一共检测出 " << faceNum << " 张脸。" << endl;
		//暂停一下,不然一直刷新,刷新
		Sleep(1000);
	}
}


int main()
{
	thread task01(thread01);//检测线程
	thread task02(thread02);//结果显示线程
	thread task03(thread03);//结果显示线程
	task01.join();
	task02.join();
	task03.join();



/*
	Mat image, image_gray;      //定义两个Mat变量,用于存储每一帧的图像
	VideoCapture capture(0);    //从摄像头读入视频
	//VideoCapture capture(1);    //从摄像头读入视频
	while (1)                  //循环显示每一帧
	{
		capture >> image;     //读取当前帧

		cvtColor(image, image_gray, CV_BGR2GRAY);//转为灰度图
		equalizeHist(image_gray, image_gray);//直方图均衡化,增加对比度方便处理
		CascadeClassifier eye_Classifier;  //载入分类器
		CascadeClassifier face_cascade;    //载入分类器

		//加载分类训练器,OpenCv官方文档提供的xml文档,可以直接调用
		//xml文档路径  opencv\sources\data\haarcascades 
		if (!eye_Classifier.load("D:\\opencv\\data\\haarcascades\\haarcascade_eye.xml"))  //需要将xml文档放在自己指定的路径下
		{
			cout << "Load haarcascade_eye.xml failed!" << endl;
			return 0;
		}

		if (!face_cascade.load("D:\\opencv\\data\\haarcascades\\haarcascade_frontalface_alt2.xml"))
		{
			cout << "Load haarcascade_frontalface_alt failed!" << endl;
			return 0;
		}

		//vector 是个类模板 需要提供明确的模板实参 vector<Rect>则是个确定的类 模板的实例化
		vector<Rect> eyeRect;
		vector<Rect> faceRect;

		//检测关于眼睛部位位置
		eye_Classifier.detectMultiScale(image_gray, eyeRect, 1.1, 2, 0 | CV_HAAR_SCALE_IMAGE, Size(30, 30));//检测
		for (size_t eyeIdx = 0; eyeIdx < eyeRect.size(); eyeIdx++)
		{
			rectangle(image, eyeRect[eyeIdx], Scalar(0, 0, 255));   //用矩形画出检测到的位置
		}

		//检测关于脸部位置
		face_cascade.detectMultiScale(image_gray, faceRect, 1.1, 2, 0 | CV_HAAR_SCALE_IMAGE, Size(30, 30));//检测
		for (size_t i = 0; i < faceRect.size(); i++)
		{
			rectangle(image, faceRect[i], Scalar(0, 0, 255));      //用矩形画出检测到的位置
		}

		imshow("人脸识别图", image);    //显示当前帧
		char c = waitKey(30);         //延时30ms,即每秒播放33帧图像
		if (c == 27)  break;
	}

*/

	/*读取摄像头图像*/
	//VideoCapture captue(0);	
	//VideoCapture captue(1);
	//Mat frame;
	//while (1)
	//{
	//	captue >> frame;
	//	imshow("我的摄像头", frame);
	//	waitKey(30);
	//}


	/*读取本地图像*/

	//cv::Mat LocaImage = cv::imread("D:\\opencv\\Test01.jpg");

	//if (!LocaImage.data) {
	//	return 1;
	//}
	//cv::imshow("本地图像", LocaImage);
	//cv::waitKey(0);

	return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值