刚刚开始,觉得有趣,心太急想要继续深入研究,,花费一个小时网上查代码,组织,测试,终于出了个人脸识别代码。欧耶!
在OopenCV的开发包中有线程的训练文件XML,E:\opencv\sources\data可以直接拿来做测试使用。如果想要更深入的进入计算机视觉圈子,那么以后这个xml文件需要自己去学习如是训练。今天就做一个测试,建立了三个线程,两个显示 结果,一个检测。
#include <iostream>
#include <string>
#include <thread>
#include <Windows.h>
#include <opencv2\opencv.hpp>
#include<opencv2/imgproc/imgproc.hpp>
#include<opencv2/highgui/highgui.hpp>
using namespace cv;
using namespace std;
int eyeNum = 0;
int faceNum = 0;
void thread01()
{
Mat image, image_gray; //定义两个Mat变量,用于存储每一帧的图像
VideoCapture capture(0); //从摄像头读入视频
while (TRUE) {
capture >> image; //读取当前这一个张图像
cvtColor(image, image_gray, CV_BGR2GRAY);//把图像转为灰度图,因为一般图像处理都是处理灰度图像
equalizeHist(image_gray, image_gray); //增加对比度方的函数
CascadeClassifier eye_Classifier; //眼睛的分类器
CascadeClassifier face_cascade; //脸的分类器
if (!eye_Classifier.load("D:\\opencv\\data\\haarcascades\\haarcascade_eye.xml"))
{
cout << "加载失败了,骚年。" << endl;
}
if (!face_cascade.load("D:\\opencv\\data\\haarcascades\\haarcascade_frontalface_alt2.xml"))
{
cout << "加载失败了,骚年。" << endl;
}
//vector 是个类模板 需要提供明确的模板实参 vector<Rect>则是个确定的类 模板的实例化
vector<Rect> eyeRect;
vector<Rect> faceRect;
//检测关于眼睛部位位置
eye_Classifier.detectMultiScale(image_gray, eyeRect, 1.1, 2, 0 | CV_HAAR_SCALE_IMAGE, Size(30, 30));//检测
for (size_t eyeIdx = 0; eyeIdx < eyeRect.size(); eyeIdx++)
{ //记录检测到几只眼睛
eyeNum = eyeRect.size();
//显示位置
rectangle(image, eyeRect[eyeIdx], Scalar(0, 0, 255));
}
//检测关于脸部位置
face_cascade.detectMultiScale(image_gray, faceRect, 1.1, 2, 0 | CV_HAAR_SCALE_IMAGE, Size(30, 30));//检测
for (size_t i = 0; i < faceRect.size(); i++)
{ //记录检测到几张脸
faceNum = faceRect.size();
//显示位置
rectangle(image, faceRect[i], Scalar(0, 0, 255));
}
imshow("人脸识别图", image); //显示一下当前这一张图片
char c = waitKey(25); //延时30ms,即每秒播放33帧图像
if (c == 23) break;
}
}
void thread02()
{
while (true)
{
//在控制台显示检测结果
cout << "一共检测出 "<< eyeNum <<" 个眼睛。" << endl;
//暂停一下,不然一直刷新,刷新
Sleep(1000);
}
}
void thread03()
{
while (true)
{ //在控制台显示检测结果
cout << "一共检测出 " << faceNum << " 张脸。" << endl;
//暂停一下,不然一直刷新,刷新
Sleep(1000);
}
}
int main()
{
thread task01(thread01);//检测线程
thread task02(thread02);//结果显示线程
thread task03(thread03);//结果显示线程
task01.join();
task02.join();
task03.join();
/*
Mat image, image_gray; //定义两个Mat变量,用于存储每一帧的图像
VideoCapture capture(0); //从摄像头读入视频
//VideoCapture capture(1); //从摄像头读入视频
while (1) //循环显示每一帧
{
capture >> image; //读取当前帧
cvtColor(image, image_gray, CV_BGR2GRAY);//转为灰度图
equalizeHist(image_gray, image_gray);//直方图均衡化,增加对比度方便处理
CascadeClassifier eye_Classifier; //载入分类器
CascadeClassifier face_cascade; //载入分类器
//加载分类训练器,OpenCv官方文档提供的xml文档,可以直接调用
//xml文档路径 opencv\sources\data\haarcascades
if (!eye_Classifier.load("D:\\opencv\\data\\haarcascades\\haarcascade_eye.xml")) //需要将xml文档放在自己指定的路径下
{
cout << "Load haarcascade_eye.xml failed!" << endl;
return 0;
}
if (!face_cascade.load("D:\\opencv\\data\\haarcascades\\haarcascade_frontalface_alt2.xml"))
{
cout << "Load haarcascade_frontalface_alt failed!" << endl;
return 0;
}
//vector 是个类模板 需要提供明确的模板实参 vector<Rect>则是个确定的类 模板的实例化
vector<Rect> eyeRect;
vector<Rect> faceRect;
//检测关于眼睛部位位置
eye_Classifier.detectMultiScale(image_gray, eyeRect, 1.1, 2, 0 | CV_HAAR_SCALE_IMAGE, Size(30, 30));//检测
for (size_t eyeIdx = 0; eyeIdx < eyeRect.size(); eyeIdx++)
{
rectangle(image, eyeRect[eyeIdx], Scalar(0, 0, 255)); //用矩形画出检测到的位置
}
//检测关于脸部位置
face_cascade.detectMultiScale(image_gray, faceRect, 1.1, 2, 0 | CV_HAAR_SCALE_IMAGE, Size(30, 30));//检测
for (size_t i = 0; i < faceRect.size(); i++)
{
rectangle(image, faceRect[i], Scalar(0, 0, 255)); //用矩形画出检测到的位置
}
imshow("人脸识别图", image); //显示当前帧
char c = waitKey(30); //延时30ms,即每秒播放33帧图像
if (c == 27) break;
}
*/
/*读取摄像头图像*/
//VideoCapture captue(0);
//VideoCapture captue(1);
//Mat frame;
//while (1)
//{
// captue >> frame;
// imshow("我的摄像头", frame);
// waitKey(30);
//}
/*读取本地图像*/
//cv::Mat LocaImage = cv::imread("D:\\opencv\\Test01.jpg");
//if (!LocaImage.data) {
// return 1;
//}
//cv::imshow("本地图像", LocaImage);
//cv::waitKey(0);
return 0;
}