【神经网络】卷积神经网络CNN

本文详细介绍了卷积神经网络(CNN)的工作原理,包括神经网络概述、CNN结构(输入层、卷积层、池化层和全连接层)、PyTorch中的conv1d和conv2d区别,以及如何使用PyTorch构建CNN模型。重点阐述了CNN的核心要素和示例代码。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

卷积神经网络

欢迎访问Blog全部目录

1. 神经网络概览

Leijnen, Stefan & Veen, Fjodor. (2020). The Neural Network Zoo. Proceedings. 47. 9. 10.3390/proceedings47010009.

2.CNN(Convolutional Neunal Network)

CNN的核心为使用卷积核对图像矩阵进行卷积运算(线性运算)!!!

2.1.学习链接

学习笔记:深度学习(3)——卷积神经网络(CNN)理论篇_cnn理论-CSDN博客
【深度学习】一文搞懂卷积神经网络(CNN)的原理(超详细)_卷积神经网络原理-CSDN博客

2.2.CNN结构

2.2.1.基本结构

在这里插入图片描述

2.2.1.1输入层

​ 图片在计算机中是包括 (宽,高,深)的三维矩阵,元素为灰度值或RGB值,其中矩阵的深即为RGB层次。如果为RGB图片,图片深度为3。图片的三维矩阵即为CNN的输入。(宽,高)矩阵为1个channel,(宽,高)矩阵为特征图

​ 输入层即接收原始图片数据,CNN可以保留图片的连续像素(物体的不变性),加深神经网络对图片的理解。

2.2.1.2.卷积层|Convolution Layers

作用:捕捉图片的局部特征而不受其位置的影响。

多个卷积核叠加即为卷积层。

卷积层后需接激活函数(如ReLU)来引入非线性。

2.2.1.3.池化层|Pooling layers

作用:通过减小特征图的大小(下采样)来减少计算复杂性。它通过选择池化窗口内的最大值或平均值来实现。这有助于提取最重要的特征。

有点类似于图像的模糊处理!

2.3.1.4.全连接层|Linear
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值