卷积神经网络
欢迎访问Blog全部目录!
文章目录
1. 神经网络概览
Leijnen, Stefan & Veen, Fjodor. (2020). The Neural Network Zoo. Proceedings. 47. 9. 10.3390/proceedings47010009.
2.CNN(Convolutional Neunal Network)
CNN的核心为使用卷积核对图像矩阵进行卷积运算(线性运算)!!!
2.1.学习链接
学习笔记:深度学习(3)——卷积神经网络(CNN)理论篇_cnn理论-CSDN博客
【深度学习】一文搞懂卷积神经网络(CNN)的原理(超详细)_卷积神经网络原理-CSDN博客
2.2.CNN结构
2.2.1.基本结构
2.2.1.1输入层
图片在计算机中是包括 (宽,高,深)的三维矩阵,元素为灰度值或RGB值,其中矩阵的深即为RGB层次。如果为RGB图片,图片深度为3。图片的三维矩阵即为CNN的输入。(宽,高)矩阵为1个channel,(宽,高)矩阵为特征图。

输入层即接收原始图片数据,CNN可以保留图片的连续像素(物体的不变性),加深神经网络对图片的理解。
2.2.1.2.卷积层|Convolution Layers
作用:捕捉图片的局部特征而不受其位置的影响。
多个卷积核叠加即为卷积层。
卷积层后需接激活函数(如ReLU)来引入非线性。
2.2.1.3.池化层|Pooling layers
作用:通过减小特征图的大小(下采样)来减少计算复杂性。它通过选择池化窗口内的最大值或平均值来实现。这有助于提取最重要的特征。
有点类似于图像的模糊处理!