【神经网络】循环神经网络RNN和长短期记忆神经网络LSTM

本文详细介绍了循环神经网络RNN的基础概念、结构及其缺点,特别强调了梯度弥散和爆炸问题。随后深入探讨了长短期记忆网络LSTM的设计,包括其结构、关键组件如隐藏态、遗忘门、记忆门和输出门,以及如何在PyTorch中使用LSTMAPI进行模型构建。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

循环神经网络RNN和长短期记忆神经网络LSTM

欢迎访问Blog总目录

1.循环神经网络RNN(Recurrent Neural Network)

1.1.学习链接

一文看尽RNN(循环神经网络) - 知乎 (zhihu.com)

一文搞懂RNN(循环神经网络)基础篇 - 知乎 (zhihu.com)

1.2.RNN结构

循环神经网络(Recurrent Neural Network, RNN)是一类以 序列(sequence)数据为输入,在序列的演进方向进行 递归(recursion)且所有节点(循环单元)按链式连接的 递归神经网络(recursive neural network)。

RNN的输入不仅与当前时刻的输入有关,还与之前时刻的状态(输出)有关。(记忆功能)

RNN的基本结构:

RNN结构公式:
O t = g ( V ⋅ S t ) S t = f ( U ⋅ X t + W ⋅ S t − 1 ) O_t=g(V·S_t)\\ S_t=f(U·X_t+W·S_{t-1}) Ot=g(VSt)St=f(UXt+W

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值