循环神经网络RNN和长短期记忆神经网络LSTM
欢迎访问Blog总目录!
文章目录
1.循环神经网络RNN(Recurrent Neural Network)
1.1.学习链接
一文看尽RNN(循环神经网络) - 知乎 (zhihu.com)
一文搞懂RNN(循环神经网络)基础篇 - 知乎 (zhihu.com)
1.2.RNN结构
循环神经网络(Recurrent Neural Network, RNN)是一类以 序列(sequence)数据为输入,在序列的演进方向进行 递归(recursion)且所有节点(循环单元)按链式连接的 递归神经网络(recursive neural network)。
RNN的输入不仅与当前时刻的输入有关,还与之前时刻的状态(输出)有关。(记忆功能)
RNN的基本结构:


RNN结构公式:
O t = g ( V ⋅ S t ) S t = f ( U ⋅ X t + W ⋅ S t − 1 ) O_t=g(V·S_t)\\ S_t=f(U·X_t+W·S_{t-1}) Ot=g(V⋅St)St=f(U⋅Xt+W⋅