可变形形状检索与多尺度配准技术
在当今的模式识别和形状分析领域,可变形形状检索以及多尺度配准技术发挥着至关重要的作用。本文将深入探讨两个重要的研究方向:一是基于Kernel Bundle EPDiff的多尺度配准方法LDDKBM,它能够在多个尺度上实现更优的形状配准;二是通过学习扩散核来实现可变形形状检索的方法,该方法借鉴了经典信号处理中的滤波思想,旨在构造最优的扩散几何形状描述符。
1. 多尺度配准:LDDKBM框架
1.1 数学基础
LDDKBM框架是对LDDMM的扩展,它考虑了多个尺度上的变形。在这个框架中,关键点的轨迹和动量演化由以下系统描述:
- 首先,由于 $\frac{d}{dt}(D_{x_{t,i}}\phi_{\Psi(w) {t_0}})^T = -D {x_{t,i}}\Psi(w_t)^T (D_{x_{0,i}}\phi_{\Psi(w) {t_0}})^T$,动量的导数满足 $\frac{d}{dt}a {t,r,i} = \frac{d}{dt}[(D\phi_{\Psi(w) {t_0}})^T a {0,r,i}] = -D_{x_{t,i}}\Psi(w_t)^T a_{t,r,i}$。
- 然后,整个系统可以表示为:
- $\Psi(w_t) = \int_{I_W} \sum_{l=1}^{N} K_r(\cdot, x_{t,l})a_{t,r,l}dr$
- $\frac{d}{dt}a_{t,r,i} = -[\int_{I_W} \sum_{l=1}^{N} D_1(K_s(x_{t,i}, x_{t,l})a_{t,s,