yy01234
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
24、个性化与社区服务融合的移动旅游规划系统
在数字化时代背景下,移动技术正在深刻改变旅游行业,个性化与社区服务融合的移动旅游规划系统应运而生。该系统整合了个性化服务、社区协作和旅游信息管理,通过移动设备为用户提供全面的旅行规划支持。从个性化档案管理、智能推荐、自助规划,到社区互动、反向拍卖、行程跟踪等功能,系统覆盖了旅行决策的全过程。同时,文章提出未来发展方向,包括引入人工智能、VR/AR和物联网技术,拓展跨境旅游与旅游后服务,以及加强社区建设等策略。该系统不仅提升了旅行者的体验,也为旅游服务提供商带来了精准营销和竞争优势,是旅游行业数字化转型的重要原创 2025-07-25 13:55:51 · 20 阅读 · 0 评论 -
23、机器学习与旅游服务的创新融合:算法优化与服务集成
本博客探讨了机器学习与旅游服务的创新融合,重点介绍了RN学习算法的元参数优化方法和基于遗传算法的优化策略。实验表明,逆多二次核函数在优化过程中表现最佳,为机器学习模型性能提升提供了有效途径。此外,博客还提出了一个集成个性化和社区功能的移动旅游规划框架,通过系统开发与原型示例验证了服务框架的可行性。博客内容还总结了机器学习与旅游服务融合的优势与挑战,并展望了未来发展趋势,为相关领域的研究与应用提供了重要参考。原创 2025-07-24 14:08:22 · 14 阅读 · 0 评论 -
22、医学信号分类与正则化网络元参数优化方法研究
本博文主要研究了两个不同领域的技术方法。在医学领域,构建了一个基于离散隐马尔可夫模型(DHMM)的颈内动脉多普勒信号分类系统,通过离散小波变换(DWT)进行特征提取,并采用香农熵实现特征降维,最终利用DHMM分类器实现了对健康和狭窄颈内动脉信号的高精度分类。在机器学习领域,提出了一种基于遗传算法的正则化网络元参数优化方法,通过最小化交叉验证误差自动寻找最优核函数类型、核参数和正则化参数组合,从而提升了正则化网络的性能。研究结果表明,这两种方法均具有较高的实用性与创新价值,为医学信号处理和机器学习提供了有效的原创 2025-07-23 14:36:21 · 17 阅读 · 0 评论 -
21、背景流量数据包大小对VoIP语音质量的影响及颈动脉多普勒信号分类研究
本博文探讨了两个主要研究领域:背景流量数据包大小对VoIP语音质量的影响,以及基于离散隐马尔可夫模型和小波变换熵的颈内动脉多普勒信号分类方法。研究发现,小数据包容易导致网络拥塞,从而降低VoIP语音质量,不同编解码器对数据包丢失的耐受性不同,这对VoIP系统的设计和部署提供了优化建议。在颈动脉多普勒信号分类研究中,提出的方法达到了97.38%的高准确率,为颈动脉疾病的非侵入性诊断提供了一种有效的工具。这些研究成果在通信系统优化和医学诊断领域具有重要的应用价值。原创 2025-07-22 10:42:40 · 14 阅读 · 0 评论 -
20、BPMN中活锁检测方法:从基础概念到实践应用
本文介绍了一种在BPMN(业务流程建模符号)中检测活锁的方法。通过将BPMN模型转换为流程表达式,并分析其是否包含重复操作,可以判断是否存在活锁问题。文章详细阐述了BPMN的基础元素、形式化定义、流程链操作、活锁检测方法以及实验验证,为业务流程的可靠性分析和优化提供了理论支持和实践指导。原创 2025-07-21 09:27:27 · 14 阅读 · 0 评论 -
19、细胞自动机在对称密钥密码学及 BPMN 活锁检测中的应用
本文探讨了细胞自动机在对称密钥密码学和 BPMN 活锁检测中的应用。在密码学部分,介绍了基于细胞自动机(CA)的动态 S - 盒设计方法,分析了其密码学性质,如非线性、自相关、平衡性和严格雪崩准则(SAC)等,展示了其在加密系统中的高效性和安全性。在 BPMN 活锁检测部分,提出了一种将 BPMN 转换为过程表达式的方法,用于检测业务流程中的活锁问题,验证了该方法的准确性与通用性。两种方法都为各自领域的研究和实践提供了有价值的参考。原创 2025-07-20 15:14:06 · 12 阅读 · 0 评论 -
18、智能公共设施设计:情境感知垃圾桶与细胞自动机在对称密钥密码学中的应用
本文探讨了两项前沿技术的应用:情境感知垃圾桶和基于细胞自动机(CA)的对称密钥密码学。情境感知垃圾桶基于Endley的情境感知三层次理论,通过垃圾、用户和环境感知实现智能化操作,以减少传染病传播风险。另一方面,细胞自动机被用于生成动态S-boxes,提供比传统固定S-boxes更高的安全性与灵活性。研究还分析了CA参数调整对S-boxes密码学特性的影响,展示了其在新型加密算法中的潜力。两者分别在公共卫生与信息安全领域提供了创新解决方案,并展望了未来更广泛的应用前景。原创 2025-07-19 13:43:40 · 14 阅读 · 0 评论 -
17、基于神经网络的股票预测特征选择方法
本文提出了一种基于神经网络和自组织映射(SOM)的股票预测特征选择方法。通过将特征选择问题形式化为一个优化问题,该方法利用相关性和自相关性指标选择最优输入特征子集,以提高预测的准确性和效率。实验结果表明,该方法在通用电气等数据集上显著提升了预测性能,并具有数据驱动、无需先验知识的优势。未来工作将深入研究方法的有效性、与其他特征选择方法的比较以及与不同机器学习算法的结合。原创 2025-07-18 13:40:49 · 15 阅读 · 0 评论 -
16、基于直线检测和分类方法的眼镜头部姿态估计
本博文介绍了一种基于直线检测和分类方法的眼镜头部姿态估计系统。该系统利用佩戴眼镜人群的眼镜腿作为新颖特征,结合几何方法将图像分类为9种离散的面部姿态。系统主要由数据准备、眼镜腿检测、区域分类和面部姿态分类四个部分组成。通过C/C++和OpenCV实现,系统在偏航角度较大的情况下表现出较高的准确率,并具有良好的鲁棒性和可解释性。文章详细阐述了系统的设计原理、技术细节、实验结果及未来发展方向,探讨了其在人机交互、安防监控和医疗康复等领域的广泛应用前景。原创 2025-07-17 09:50:52 · 8 阅读 · 0 评论 -
15、药店业务规则管理与戴眼镜者头部姿态估计
本文探讨了药店业务规则管理和戴眼镜者头部姿态估计两个主题。在药店业务规则管理部分,介绍了业务规则的推导与存储、元数据的附加、分类法的应用以及药店本体的设计与实现,强调了以知识为中心的组织如何提升信息管理效率。在头部姿态估计部分,分析了现有方法的局限性,并提出了一种结合线检测和分类的新方法,该方法在高偏航/俯仰角度下表现优异,具有较低的数据准备和训练成本,同时计算速度更快。两个领域均展示了技术的创新与应用潜力,为未来药店信息管理和人机交互提供了新的发展方向。原创 2025-07-16 16:45:14 · 11 阅读 · 0 评论 -
14、职场满意度与药房业务规则管理洞察
本文探讨了影响泰国信息技术教育工作者职场满意度的关键因素,包括组织接纳、培训项目和职业支持,并分析了药房在业务规则管理中面临的挑战及解决方案。通过使用OWL建模构建药房本体,解决了数据孤立问题,提高了业务敏捷性和工作效率。同时,文章对解决方案的优缺点进行了全面评估,为相关领域的进一步优化提供了参考。原创 2025-07-15 14:21:18 · 11 阅读 · 0 评论 -
13、泰国IT高等教育教师职业满意度的影响因素
本研究探讨了泰国IT高等教育教师职业满意度的影响因素,基于Igbaria和Wormley的组织经验模型,分析了组织接纳、期望达成、培训计划、职业支持和工作自主权对职业满意度的影响,以及职业满意度对教学投入的作用。研究发现,组织接纳、培训计划和职业支持对职业满意度有显著正向影响,而职业满意度仅对教学投入有低程度的正相关。研究还揭示了泰国IT教育工作者在社会文化背景下的职业动机特点,为改善教师职业环境、提升教育质量提供了理论支持和实践建议。原创 2025-07-14 11:47:02 · 15 阅读 · 0 评论 -
12、支持集成软件过程开发的原型探索
本文提出了一种支持集成软件过程开发与维护的框架,包含软件开发生命周期成熟度(SDM)模型和集成的PMBOK - Scrum模型。SDM模型用于评估组织当前的软件过程成熟度并识别改进点,而集成模型则用于规划和实施集成化的软件过程。为支持该框架的实际应用,开发了基于Web的原型工具SPAD,提供评估、项目定义与规划、约束检查、导出及再次评估五大功能。文章还讨论了后续的改进方向,包括可用性分析和在泰国电信行业的案例研究,以验证框架和工具的有效性与实用性。原创 2025-07-13 12:32:01 · 13 阅读 · 0 评论 -
11、航空轮刹车系统与软件开发流程的安全评估与改进
本博客深入探讨了航空轮刹车系统的安全评估与软件开发流程的改进。在航空领域,重点分析了刹车系统控制单元(BSCU)的安全设计、初步系统安全评估(PSSA)和系统安全评估(SSA),并通过故障树分析(FTA)和故障模式与影响分析(FMEA)验证系统的可靠性。同时,博客介绍了如何通过集成的PMBOK-Scrum模型提升软件开发流程的效率与质量,并结合软件开发成熟度模型推动持续改进。研究强调了跨领域系统评估与流程优化的重要性,为保障系统安全与提升开发效能提供了理论支持与实践指导。原创 2025-07-12 10:25:23 · 17 阅读 · 0 评论 -
10、动态贝叶斯网络与信息管理在相关领域的应用探索
本文探讨了动态贝叶斯网络(DBN)在位置预测中的应用,以及信息管理在系统可靠性中的作用。通过实验验证,DBN模型在用户位置预测方面表现出较高的准确率,优于其他模型如GBN、TAN和NBN。此外,文章介绍了ASTrA方法如何解决系统可靠性中的信息一致性和可追溯性问题,并通过元模型和系统模型的统一管理,提高了复杂系统的可认证性。研究展示了DBN在普适计算环境中的潜力,以及ASTrA在安全关键系统开发中的价值。原创 2025-07-11 09:00:27 · 15 阅读 · 0 评论 -
9、普适计算环境下的上下文预测与位置预测方法
本文探讨了普适计算环境下的上下文预测与位置预测方法,重点分析了贝叶斯网络(包括 GBN、TAN、NBN 和 DBN)在提升预测准确性中的作用。文章从上下文预测的重要性出发,结合实际应用场景,介绍了多种预测技术及其具体案例,并对不同模型的性能进行了比较。最后,文章提出了未来的研究方向,包括用户评估、推理机制比较和集成方法改进,为提升普适计算环境中上下文与位置预测性能提供了参考。原创 2025-07-10 12:52:43 · 15 阅读 · 0 评论 -
8、U-BASE:基于通用贝叶斯网络的上下文预测决策支持系统
U-BASE是一种基于通用贝叶斯网络(GBN)的上下文预测决策支持系统,通过归纳因果关系和假设分析,实现对用户未来上下文(如位置、活动等)的精准预测,并提供上下文敏感的智能推荐。实验表明,GBN在预测准确性、结构灵活性和变量需求方面优于传统贝叶斯网络模型。该系统在智能交通、医疗健康和智能家居等领域具有广泛的应用前景。原创 2025-07-09 13:53:36 · 14 阅读 · 0 评论 -
7、基于通用贝叶斯网络分析在线游戏道具价值
本研究基于消费价值理论和游戏文献,分析了影响玩家购买在线游戏道具的因素,并首次应用通用贝叶斯网络(GBN)方法对这些因素之间的因果关系进行建模和分析。研究发现,享受价值、视觉权威价值、角色能力价值、角色认同和满意度对玩家的购买意愿有直接影响,其中角色认同是最重要的影响因素。此外,视觉权威价值的变化显著影响购买意愿和享受价值,而GBN方法能够提供因果关系和敏感性分析,为游戏公司设计更具吸引力的游戏道具和制定有效管理策略提供了重要依据。原创 2025-07-08 12:34:26 · 20 阅读 · 0 评论 -
6、社交网络服务与在线游戏用户行为影响因素分析
本文探讨了社交网络服务(SNS)用户使用意愿的影响因素以及在线游戏物品价值对用户购买意愿的作用。在SNS研究中,任务导向属性、愉悦导向属性和人际信任导向属性对不同使用场景(如通用使用、协作学习、营销沟通)的使用意愿有显著影响,同时倾向信任和享受度在营销沟通场景中起到关键作用。研究发现,隐私和安全担忧并未显著影响用户使用意愿。此外,在线游戏研究引入了消费价值理论和通用贝叶斯网络(GBN)方法,以更清晰地分析游戏物品价值与用户购买意愿之间的因果关系。整体而言,了解用户行为影响因素有助于优化服务设计、提升用户体验原创 2025-07-07 11:06:21 · 13 阅读 · 0 评论 -
5、医疗诊断与社交网络使用意向的技术解析
本博客主要探讨了基于规则挖掘的安全医疗诊断系统与社交网络使用意向影响因素。医疗诊断部分介绍了基于症状输入的规则匹配、阶段计算、图像加密技术和新型验证码机制,旨在提升诊断准确性与数据安全性。社交网络部分基于技术接受模型(TAM)、内在动机和信任属性构建理论框架,分析任务导向、愉悦导向和人际信任对用户使用意向的影响。研究结果为医疗系统智能化和社交网络优化提供了理论与实践支持。原创 2025-07-06 12:28:38 · 11 阅读 · 0 评论 -
4、加密与医疗诊断的创新技术应用
本文探讨了加密技术和医疗诊断领域的两项创新技术应用。一方面,结合混沌系统与RSA算法的新型加密方法,通过混沌系统的初始敏感性和RSA算法的非对称加密特性,显著提高了数据传输和存储的安全性。另一方面,基于规则挖掘的安全医疗诊断系统,利用输入优化和规则匹配机制,实现了高效、准确且隐私保护的疾病诊断。文章还分析了这两项技术的优势、应用前景,以及面临的挑战与解决方案,为未来技术发展提供了方向。原创 2025-07-05 14:30:37 · 33 阅读 · 0 评论 -
3、人工智能方法在冠心病诊断中的比较研究
本文探讨并比较了多层感知器神经网络(MLPNN)和支持向量机(SVM)在冠心病(CAD)诊断中的应用效果。基于运动负荷试验(EST)和冠状动脉造影(CAG)数据,研究发现人工智能方法在诊断准确率、灵敏度、特异性以及与CAG结果的一致性方面均优于基于人类评估的传统方法。文章还介绍了数据预处理、模型训练与测试、性能评估等关键步骤,并展望了人工智能在心血管疾病诊断中的未来发展方向。原创 2025-07-04 12:37:49 · 13 阅读 · 0 评论 -
2、智能算法在不同领域的应用与效果分析
本文探讨了智能算法在不同领域中的应用与效果,包括无线传感器网络的节能算法、小麦品种分类以及冠状动脉疾病诊断。在无线传感器网络中,基于元胞自动机的三相算法有效延长了网络寿命并节省能源;在小麦品种分类中,BPSO-M-SVM系统提高了分类准确率并减少了训练时间;在冠状动脉疾病诊断中,SVM和MLPNN算法提升了诊断的准确性和可靠性。文章总结了各领域的应用优势、面临的挑战及未来发展趋势,展示了智能算法的巨大潜力和应用前景。原创 2025-07-03 13:41:13 · 19 阅读 · 0 评论 -
1、移动无线传感器网络中基于元胞自动机的分布式电源管理方法评估
本文提出了一种基于元胞自动机的分布式电源管理方法,用于移动无线传感器网络(WSNs),旨在通过动态调整传输范围和切换传感器节点的运行状态,最大化网络寿命。与传统的ECCA方法相比,三相算法在电池剩余量、碎片化、连通性和覆盖范围等关键指标上表现出更优的性能。该方法在环境监测、工业自动化和智能交通等实际应用场景中具有广泛的应用前景。原创 2025-07-02 11:38:38 · 15 阅读 · 0 评论