使用VGG16来训练cifar数据集

VGG16的特点:

VGGNet使用了更深的结构, AlexNet只有8 层网络,而VGGNet 有16 层,不在使用大的卷积核,只使用3*3卷积核和2*2的池化层

之所以使用小的滤波器,是因为层叠很多小的滤波器的感受野和一个大的滤波器的感受野是相同的,还能减少参数,同时有更深的网络结构。其实他只是不断的对网络层进行叠加,并没有太多的创新,而增加深度确实可以一定程度改善模型的效果。

代码如下

  1. 导入必要的包
  2. import torch
    from torch.autograd import Variable
    import numpy as np
    import matplotlib.pyplot as plt
    from torch import nn,optim
    from torch.utils.data import DataLoader
    from torchvision import datasets,transforms
    
  3. 定义模型结构
  4. class VGG(nn.Module):
        def __init__(self,num_classes):
            super(VGG,self).__init__()
            self.features=nn.Sequential(
                nn.Conv2d(3,64,kernel_size=3,padding=1),
                nn.ReLU(True),
                nn.Conv2d(64,64,kernel_size=3,padding=1),
                nn.ReLU(True),
                nn.MaxPool2d(kernel_size=2,stride=2),
                nn.C
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值