深度学习环境常用命令(持续更新......)

本文详细介绍了在Windows环境下,使用Anaconda管理的深度学习项目中,如何查看并确认PyTorch和TensorFlow的CUDA及CUDNN版本。特别强调了在配置环境时通过命令行进行查看的便捷性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

深度学习涉及常用命令

在深度学习过程中常涉及的命令记录备查。
本文中涉及命令均在windows上,使用Anaconda管理环境的情况下。

显卡环境相关命令

1.pytorch下查看cuda版本,查看cudnn版本

import torch
print(torch.version.cuda) 
print(torch.backends.cudnn.version())

在这里插入图片描述

2.还有一种方式是在Anaconda里查看。但是由于创建配置环境时操作不同,导致查看不到。因此建议采用命令行的形式最佳。

下图是配置的tensorflow环境中:
在这里插入图片描述
下图是配置的pytorch环境中:
在这里插入图片描述

conda环境相关命令

1.查询设备上已有conda的环境

conda env list
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

thomasyyu

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值