机器学习培训———基于anaconda的tensorflow简单搭建

本文详细介绍了如何使用Anaconda进行Python环境的搭建,包括下载Anaconda、创建新的Python环境、安装TensorFlow和matplotlib等库,以及安装Spyder进行编程。最后通过一段测试代码验证了TensorFlow的正确安装。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.下载anaconda
anaconda下载地址:https://repo.anaconda.com/archive/
在这里插入图片描述
2.打开anaconda图形化界面
在这里插入图片描述
3.创建一个新的python环境
在这里插入图片描述
4.找到tensorflow并安装
在这里插入图片描述
5.同理安装matplotlib
在这里插入图片描述
6.安装spyder用于编程
在这里插入图片描述
7.打开并测试代码
在这里插入图片描述
测试代码如下

import tensorflow as tf
hello = tf.constant("hello cbyer space")
sess = tf.Sesstion()
print(sess.run(hello))
Hands-On Machine Learning with Scikit-Learn and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems by Aurélien Géron English | 13 Mar. 2017 | ASIN: B06XNKV5TS | 581 Pages | AZW3 | 21.66 MB Through a series of recent breakthroughs, deep learning has boosted the entire field of machine learning. Now, even programmers who know close to nothing about this technology can use simple, efficient tools to implement programs capable of learning from data. This practical book shows you how. By using concrete examples, minimal theory, and two production-ready Python frameworks—scikit-learn and TensorFlow—author Aurélien Géron helps you gain an intuitive understanding of the concepts and tools for building intelligent systems. You’ll learn a range of techniques, starting with simple linear regression and progressing to deep neural networks. With exercises in each chapter to help you apply what you’ve learned, all you need is programming experience to get started. Explore the machine learning landscape, particularly neural nets Use scikit-learn to track an example machine-learning project end-to-end Explore several training models, including support vector machines, decision trees, random forests, and ensemble methods Use the TensorFlow library to build and train neural nets Dive into neural net architectures, including convolutional nets, recurrent nets, and deep reinforcement learning Learn techniques for training and scaling deep neural nets Apply practical code examples without acquiring excessive machine learning theory or algorithm details
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

thomasyyu

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值