52. N 皇后 II【 力扣(LeetCode) 】

零、原题链接


52. N 皇后 II

一、题目描述

  n 皇后问题 研究的是如何将 n 个皇后放置在 n × n 的棋盘上,并且使皇后彼此之间不能相互攻击。【补充:不能互相攻击就是要求一个皇后的同行、同列、同斜线都不能存在其他皇后】

  给你一个整数 n ,返回 n 皇后问题 不同的解决方案的数量。

二、测试用例

示例 1:

输入:n = 4
输出:2
解释:如上图所示,4 皇后问题存在两个不同的解法。

示例 2:

输入:n = 1
输出:1

提示:

1 <= n <= 9

三、解题思路

  1. 基本思路:
      回溯+剪枝
  2. 具体思路:
    • 每一行必定唯一存在一个皇后,所以确定皇后位置只要同一行确定即可【剪枝】
    • 每行尝试放置皇后,放置成功则将同列,同斜线的值++【因为是一行一行来放置皇后,所以可以设置值时可以不用设置当前行上面的】
    • 如果放置失败,则恢复状态;

四、参考代码

时间复杂度: O ( n ! ) \Omicron(n!) O(n!)
空间复杂度: O ( n ) \Omicron(n) O(n)【递归栈的深度最高为 n】

class Solution {
public:
    vector<vector<int>> board = vector<vector<int>>(10, vector<int>(10, 0));
    int ans = 0, n;

    void Set(const int& x, const int& y, const int& num) {
        for (int i = x + 1; i < n; i++) {
            board[i][y] += num;
        }

        auto nx = x, ny = y;
        while (nx < n && ny < n) {
            board[nx++][ny++] += num;
        }

        nx = x, ny = y;
        while (nx < n && 0 <= ny) {
            board[nx++][ny--] += num;
        }
    }

    void dfs(const int& k) {
        if (k == n) {
            ans++;

            return;
        }
        for (int i = 0; i < n; i++) {
            if (board[k][i] == 0) {
                Set(k, i, 1);
                dfs(k + 1);
                Set(k, i, -1);
            }
        }
    }

    int totalNQueens(int n) {
        this->n = n;
        dfs(0);

        return ans;
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值