深度学习100问68:什么是归一化

嘿,朋友!归一化就是一种让数据变得更“整齐”的方法。
 

想象一下,你有一堆杂乱无章的数字,它们可能大小差异很大,有的特别大,有的特别小。归一化就是要把这些数字处理一下,让它们都处在一个特定的范围里,比如 0 到 1 之间或者 -1 到 1 之间。
 
这样做有很多好处呢。首先,它可以让不同特征之间具有可比性。如果不进行归一化,一个特征的值可能非常大,而另一个特征的值非常小,这样在计算的时候,大值的特征可能会占据主导地位,小值的特征就被忽略了。归一化后,每个特征都在相同的尺度上,这样它们对结果的影响就更加公平。
 
其次,归一化可以提高算法的收敛速度。在一些机器学习算法中,比如梯度下降法,如果数据没有归一化,算法可能会在不同的尺度上搜索最优解,这样就会走很多弯路,收敛速度很慢。而归一化后,算法可以更快速地朝着最优解前进。
 
常见的归一化方法有最小最大归一化和 Z-score 标准化。最小最大归一化就是把数据映射到一个特定的区间,比如 0 到 1 之间。Z-score 标准化则是让数据的均值为 0,标准差为 1。
 
简单来说,归一化就是让数据变得更规范、更好用,让机器学习算法能够更高效地工作。

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值