力扣题解(零钱兑换)

322. 零钱兑换

给你一个整数数组 coins ,表示不同面额的硬币;以及一个整数 amount ,表示总金额。

计算并返回可以凑成总金额所需的 最少的硬币个数 。如果没有任何一种硬币组合能组成总金额,返回 -1 。

你可以认为每种硬币的数量是无限的。

思路:本题可以看成是对一堆给定的数字,选取其中某几个,组合的结果是amount,因此是完全背包问题。

dp[i][j]表示前i个物品,结果是j所需的最小银币个数。

dp[i][j]=min(dp[i-1][j],dp[i][j-coins[i]]),此处dp[i-1][j]表示不要第i个数,dp[i][j-coins[i]]表示至少要一个第i个数,因此二者会把所有可能包含在内。

初始化:

j为0的时候,一定有且仅有一种组成方式,就是一个数字都不放进去。而i为0时,除了j为0的情况,其余情况均不可能实现,因此可以初始化为一个很大的数,因为dp[i][j]求得是最小值,因此作为一个很大的数,一定不会是dp[i][j]的构成,即隐含了将不存在的情况排除在外的判断那一步。

class Solution {
public:
    int coinChange(vector<int>& coins, int amount) {
     int n=coins.size();
     int INF=0x3f3f3f3f;
     vector<vector<int>>dp(n+1,vector<int>(amount+1,INF));
     for(int i=0;i<=n;i++)
     {
        dp[i][0]=0;
     }
     coins.insert(coins.begin(),0);
     for(int i=1;i<=n;i++)
     {
        for(int j=1;j<=amount;j++)
        {
            dp[i][j]=dp[i-1][j];
            if(j-coins[i]>=0)
            {
              //  cout<<i<<j-coins[i]<<" ||";
        
            dp[i][j]=min(dp[i][j],dp[i][j-coins[i]]+1);
            
            }
        }
     }
     return dp[n][amount]==INF?-1:dp[n][amount];


    }
};

### 力扣LeetCode零钱兑换问题的C++解决方案 以下是基于动态规划方法解决 **LeetCode 322. Coin Change** 的 C++ 实现方案。此算法通过构建一个数组 `dp` 来存储子问题的结果,其中 `dp[i]` 表示凑成金额 `i` 所需最少硬币数。 #### 解决思路 该问题可以通过动态规划求解。定义状态转移方程为: \[ \text{dp}[i] = \min(\text{dp}[i], \text{dp}[i-\text{coin}] + 1) \quad \forall \text{coin} \leq i \] 初始条件设置为: \[\text{dp}[0] = 0\] (表示凑成金额 0 不需要任何硬币) 对于其他位置 \(i\) 初始化为无穷大 (\(INF\)) 或者超出范围的一个极大值,以便后续更新最小值。 最终返回结果时,如果 `\text{dp}[\text{amount}]` 始终未被有效更新,则说明无法凑齐目标金额,应返回 `-1`。 下面是完整的 C++ 实现: ```cpp #include <vector> #include <algorithm> using namespace std; class Solution { public: int coinChange(vector<int>& coins, int amount) { // 创建 dp 数组并初始化为 INF vector<long> dp(amount + 1, INT_MAX); dp[0] = 0; // 初始条件 // 外层循环遍历每种面额的硬币 for (const auto& coin : coins) { // 内层循环从当前硬币面额到总金额逐步计算最优解 for (int x = coin; x <= amount; ++x) { dp[x] = min(dp[x], dp[x - coin] + 1); // 更新状态转移方程 } } // 如果 dp[amount] 超过最大整数值则无解 return (dp[amount] == INT_MAX ? -1 : static_cast<int>(dp[amount])); } }; ``` 上述代码实现了动态规划的核心逻辑,并利用两重嵌套循环完成对所有可能组合的评估。外层循环负责逐一处理不同类型的硬币;内层循环用于迭代更新每一个金额下的最佳选择情况。 #### 时间复杂度与空间复杂度分析 时间复杂度主要取决于两个因素——硬币种类数目以及所需总额度大小。具体来说, - 设有 $n$ 种不同的硬币; - 总共要达到的目标金额记作 $\text{amount}$, 那么整体的时间复杂度大约为 O(n × amount)[^3] 。至于额外使用的内存资源方面,由于只需要维护长度等于 $(\text{amount}+1)$ 的一维数组即可满足需求,因此其空间复杂度同样也是线性的即 O(amount). ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值