
因果推断
文章平均质量分 95
阿水实证通
分享前沿实证分析方法,用Stata,R和Python做高质量实证研究,公众号【阿水实证通】
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
数字人民币试点城市政策DID(附数据)
本研究旨在深入探讨数字人民币试点政策对中国经济的潜在影响。具体而言,研究将聚焦于三个核心经济领域:城市居民消费与支付行为、商业银行存款与流动性,以及数字经济活跃度与零售业营收。研究将采用城市层面的面板数据,并运用先进的多时期 DID 估计方法,以确保因果推断的稳健性。通过对这些关键领域的影响进行量化分析,本研究将为评估数字人民币试点政策的成效提供实证依据,并为未来的政策制定和推广提供参考。原创 2025-07-16 12:16:12 · 1067 阅读 · 0 评论 -
机制分析还能怎么做?来看看「多中介因果路径分析」(附顶刊案例+源文献代码)
在社会科学研究领域,机制分析始终作为揭示变量间因果关系的核心枢纽,更是 “讲好故事” 的关键所在。以中介机制分析为例,在学界诸位研究者的探索下,其方法不断革新 —— 从传统的 “三步法”,到优化的 “两步法”,再到如今的 “因果中介” 模型,每一次迭代都让因果关系的剖析更加精准,研究故事的脉络愈发丰富多元。恰当的研究方法不仅是证实研究结论的有力工具,更能成为挖掘潜在变量关系的 “金钥匙”。近期,阿水梳理发现,近一年来顶刊中开始出现一种新的机制分析方法 —— 多中介因果路径分析。随着复杂因果关系研究的深入原创 2025-07-04 11:03:04 · 896 阅读 · 0 评论 -
因果中介分析指南(三):stata中mediate的用法(完结)【包含连续型处理效应的因果中介】
本文介绍了因果中介分析的高级应用场景,包括计数中介变量、指数均值结果、多值处理、连续处理等模型。通过Stata中的mediate命令,文章展示了如何在不同数据类型下进行中介效应分解,估计自然间接效应(NIE)、自然直接效应(NDE)和总效应(TE)。以出生体重研究为例,演示了教育程度通过吸烟行为影响婴儿体重的机制分析,并比较了线性模型与指数均值模型的结果差异。文章还涉及控制直接效应估计和处理效应尺度转换等进阶内容,为研究者提供了全面的因果中介分析实操指南。原创 2025-07-03 17:12:06 · 758 阅读 · 0 评论 -
Stata如何做机器学习?——SHAP解释框架下的足球运动员价值驱动因素识别:基于H2O集成学习模型
使用H2O机器学习框架分析1000多名足球运动员的市场价值驱动因素。通过合并GitHub和Kaggle数据,构建了包含21个变量的数据集,重点关注球员表现指标。研究采用对数转换处理数据偏态,并运用随机森林和梯度提升机进行建模(80%训练集,20%测试集)。结果显示,模型能有效预测球员市场价值(Deviance=0.654),特别揭示了法国前锋姆巴佩作为异常高价值案例。研究创新性地结合SHAP解释框架,识别出关键价值驱动因素,为足球产业转原创 2025-07-03 17:05:38 · 975 阅读 · 0 评论 -
非平行趋势下的双重差分敏感性分析:HonestDiD(stata教程)
HonestDiD:DID与事件研究的稳健推断工具包 该Stata工具包基于Rambachan & Roth (2022)的顶刊方法,通过两种创新方式量化平行趋势假设的潜在违背: 1️⃣ 相对大小限制:后处理期趋势偏离不超过预处理期最大偏离的M倍 2️⃣ 平滑性限制:趋势斜率变化幅度不超过M值 核心功能包括: • 构建考虑估计误差的稳健置信区间 • 自动计算结论成立的M值"崩溃点" • 支持非交错/交错DID设计,兼容主流命令 • 提供医疗补助扩张案例全流程分析 安装简便,支持W原创 2025-06-07 19:03:10 · 1087 阅读 · 0 评论 -
Stata好写,太好写了!附《stata代码速查表》【最全stata指南】
阿水给大伙扒拉到了stata官网精心整理的一套 《stata代码速查表》,里面啥常用的数据分析、数据转换、数据可视化的stata代码,统统都有呢。大伙可以自个儿去下载打印原创 2025-06-05 21:59:16 · 723 阅读 · 0 评论 -
合成控制双重差分(SDID)可视化实战:用synthdid绘制顶刊因果推断图表
合成双重差分法(SDID)是一种估计面板数据中处理效应的新方法。本文介绍了SDID的R语言实现包,通过加州99号提案对香烟消费的影响案例演示其应用。该包可计算处理效应点估计值、构建置信区间,并提供丰富的数据可视化功能,包括平行趋势图、控制单元贡献图和预处理趋势检验。文章对比了SDID与传统双重差分法和合成控制法的估计结果原创 2025-06-02 21:05:51 · 1117 阅读 · 0 评论 -
多期双重差分法实用指南:从基础原理到方法改进与效应解析
多期双重差分法(DiD)研究新进展 传统双重差分法(DiD)主要用于两期两组的因果效应估计,而多期DiD研究正面临方法论革新。最新研究表明,标准双向固定效应(TWFE)回归在多期处理设计中存在严重缺陷,可能导致因果效应估计偏差。 核心问题在于TWFE方法会混合三种比较:新处理单元与"从未处理"组(有效)、与"尚未处理"组(有效),以及与"已经处理"组(无效)。后者会引入动态处理效应,使估计结果难以解释,甚至出现符号反转现象。原创 2025-05-29 10:43:28 · 1123 阅读 · 0 评论 -
两时期DID的双重稳健估计:DRDID【附stata代码】
本文介绍了双重稳健差分法(DRDID)的理论基础与Stata实现。DID方法通过2×2设计(两组×两期)估计处理效应,需满足平行趋势假设。传统方法可能受异质性处理或协变量影响,而DRDID结合回归与逆概率加权双重稳健估计,只需其中一种模型正确即可获得一致估计。文章详细阐述了DID原理、控制变量选择逻辑,并演示了drdid命令的实际应用。该命令支持面板和重复截面数据,提供多种估计量选项,能有效处理潜在偏误问题。通过lalonde.dta数据示例,展示了DRDID在实证研究中的操作流程与结果解读。原创 2025-05-28 17:32:27 · 1144 阅读 · 0 评论 -
多时期DID的双重稳健估计量:stata命令CSDID
多时期双重差分法(DID)的改进估计方法CSDID v1.6的新特性,包括效率提升、新增WB置信区间和seed选项以确保结果可重复性,以及新推出的csdid_plot绘图功能。文章深入探讨了传统双向固定效应(TWFE)模型在处理异质性效应时的问题,特别是早期处理组作为控制组时可能导致的负权重问题。通过引入DRDID作为核心估计方法,CSDID有效避免了不良比较,采用双重稳健估计量来准确计算ATT(g,t)。新版本通过矩阵运算优化了标准误差计算,显著提升了运行效率。最后,文章详细说明了相关程序的安装原创 2025-05-27 23:30:28 · 1682 阅读 · 0 评论 -
Stata19中的高维固定效应 High-dimensional fixed effects (HDFE)
高维固定效应(HDFE)模型通过absorb()选项显著提升了估计效率,允许在各类线性模型中(包括普通回归、固定效应模型和工具变量模型)同时处理多个高维分类变量。相比传统方法(如直接引入分类变量指示变量),新方法能大幅减少计算时间——在百万级观测值的案例中,耗时从数分钟降至秒级。例如,在包含3个高维分类变量的模型中,areg配合absorb()选项比传统方法快300倍。该功能还扩展至xtreg, fe和ivregress 2sls命令,支持更复杂的模型设定,如聚类标准误和面板统计量计算,同时提供nosigm原创 2025-05-25 13:32:52 · 883 阅读 · 0 评论 -
广义随机森林异质性估计stata代码cate
STATA19的cate命令为因果效应分析提供了新工具,可估计个体化和群体化的治疗效果。该命令能分析治疗效果的异质性,比较不同干预策略,并识别最优治疗分配方案。示例展示了如何使用cate研究401(k)资格对金融资产的影响:通过交叉拟合和随机森林模型计算个体化平均治疗效果(IATE),发现资产效应存在显著异质性(p=0.0427)。直方图显示治疗效果呈右偏分布,表明平均效应可能低估部分群体的收益。该工具适用于劳动经济学、市场营销和医学研究等领域,可揭示协变量(如教育年限)对治疗效果的具体影响模式。原创 2025-05-24 22:20:58 · 874 阅读 · 0 评论 -
什么是因果推断?一文告诉你!
因果推断是识别变量间因果关系的科学方法,广泛应用于社会科学、医学和商业领域。黄金标准是随机对照试验(RCT),通过随机化消除偏差,但实施成本高。替代方法包括: 双重差分法(DiD):比较处理组与对照组在干预前后的差异,需满足平行趋势假设; 合成控制法(SC):为单一处理单元构建合成对照组,适用于宏观政策评估; A/B测试:数字版RCT,快速验证产品/营销效果,需控制变量确保结果可靠性。 因果分析需严谨设计,避免混淆相关性与因果性。理解这些方法有助于制定有效决策,尤其在实验受限的场景中。原创 2025-05-24 22:09:19 · 1045 阅读 · 0 评论