二维偏序问题

本文详细介绍了二维偏序问题的概念,包括偏序关系的性质,并提供了使用树状数组解决此类问题的通用方法。通过分析POJ2352、CF1579E2和CF1311F三个实例,阐述了二维偏序问题的基本解法和特殊情况的处理,总结了在不同条件下的排序和离散化策略。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

二维偏序问题

偏序问题的概念

R R R是集合 A A A上的一个二元关系,若 R R R满足:

  1. 自反性:对任意 x ∈ A x∈A xA,有 x R x xRx xRx
  2. 反对称性(即反对称关系):对任意 x , y ∈ A x,y∈A x,yA,若 x R y xRy xRy,且 y R x yRx yRx,则 x = y x=y x=y
  3. 传递性:对任意 x , y , z ∈ A x, y,z∈A x,y,zA,若 x R y xRy xRy,且 y R z yRz yRz,则 x R z xRz xRz

则称 R R R A A A上的偏序关系,通常记作 ≼ ≼ 。注意这里的 ≼ ≼ 不必是指一般意义上的“小于或等于”
若然有 x ≼ y x≼y xy,我们也说 x x x排在 y y y前面(x precedes y)

二维偏序问题通解

对于二维偏序问题,我们通常使用树状数组进行解决。关于树状数组的介绍,我在前面已经写过

二叉树基础(三)树状数组(Fenwick Tree)

将一组数据进行排序,再将另一组数据离散化后,按题意分情况压入树状数组,求前缀和,这是二维偏序问题的一般解法。

下面我们看几道例题

POJ2352

这道题按 y y y为第一关键词, x x x为第二关键词进行了排序,随后将x压入树状数组后,得到的前缀和表示比 x x x小的元素个数,而 a n s ans ans则会记录比 x x x小且比 y y y小的元素个数。代码如下

void solve() {
   
   
    int n, x;
    cin>>n;
    Fenwick tree = Fenwick(MAX);
    vector<int> ans(n);
    for (int i = 0, i < n, i++) {
   
   
        scanf("%d%*d", &x);
        ans[tree.sum(x)]++;
        tree.update(x,1);
    }
    for
<think>好的,我现在需要帮助用户了解二维树状数组的实现和应用。首先,我得回顾一下用户之前的提问和引用内容,确保回答符合他们的需求。用户提到了二维树状数组,引用中也有关于二维前缀和、单点修改以及例题的信息,比如poj2352和Codeforces的题目。 首先,我需要解释二维树状数组的基本概念。二维树状数组树状数组二维空间的扩展,主要用于处理二维数组的前缀和查询和单点更新。用户可能已经了解一维树状数组,所以可以在此基础上进行扩展。 接下来是实现部分。用户需要具体的代码示例,尤其是Python的实现。根据引用3,一维树状数组的Python实现,我需要将其扩展到二维二维树状数组的操作包括初始化、单点更新和前缀和查询。需要注意的是,二维情况下,每个更新和查询操作都需要双重循环,遍历每个维度上的索引。 然后是应用场景。用户可能想知道在什么情况下使用二维树状数组。根据引用2和4,二维树状数组适用于子矩阵求和、动态二维网格数据更新等场景,比如处理二维偏序问题或实时更新矩阵中的元素值。例如,在POJ 1195这道题中,需要处理手机的更新和区域查询,这正是二维树状数组的典型应用。 另外,用户可能关心时间复杂度。每个操作的时间复杂度是O((log n)^2),因为每个维度都需要log n的时间。相比暴力方法,这在处理大规模数据时更高效。 最后,生成相关问题。根据用户之前的问题,可能需要关于优化、应用场景以及与其他数据结构的比较的问题。比如,二维树状数组二维线段树的区别,或者如何扩展到更高维度。 需要确保代码正确无误,并符合Python语法。同时,引用相关文献,比如引用2中的二维树状数组应用和引用4中的例题,来增强回答的可信度。还要注意用户的中文回答要求,保持结构清晰,分步骤解释。</think>### 二维树状数组实现与应用详解 #### 一、核心原理 二维树状数组是树状数据结构在二维空间的扩展,主要用于高效处理**子矩阵和查询**和**单点更新**。其核心原理基于二维二进制索引结构: 1. 每个节点存储特定子矩阵的和 2. 通过**lowbit(x)**运算确定覆盖范围 3. 时间复杂度:单次查询/更新 $O((\log n)^2)$ #### 二、Python实现代码 ```python class BinaryIndexedTree2D: def __init__(self, rows, cols): self.n = rows self.m = cols self.tree = [[0]*(cols+1) for _ in range(rows+1)] def update(self, x, y, delta): # 单点更新操作 i = x while i <= self.n: j = y while j <= self.m: self.tree[i][j] += delta j += j & -j i += i & -i def query(self, x, y): # 查询(1,1)到(x,y)的子矩阵和 res = 0 i = x while i > 0: j = y while j > 0: res += self.tree[i][j] j -= j & -j i -= i & -i return res def range_query(self, x1, y1, x2, y2): # 查询任意子矩阵和 return (self.query(x2, y2) - self.query(x1-1, y2) - self.query(x2, y1-1) + self.query(x1-1, y1-1)) ``` #### 三、典型应用场景 1. **动态矩阵求和**:实时更新矩阵元素值并查询子矩阵和 - 例:POJ 1195 Mobile phones[^4] 2. **二维偏序问题**:统计满足 $x_i < x_j$ 且 $y_i < y_j$ 的点对数量 3. **图像处理**:区域像素值统计与更新 4. **游戏地图**:动态更新地形数据并快速统计区域属性 #### 四、操作时间复杂度对比 | 操作类型 | 暴力方法 | 二维树状数组 | |----------------|------------|--------------| | 单点更新 | $O(1)$ | $O((\log n)^2)$ | | 子矩阵查询 | $O(n^2)$ | $O((\log n)^2)$ | | 区域更新+查询 | $O(n^2)$ | $O((\log n)^2)$ | #### 五、实战技巧 1. **坐标偏移**:当坐标从0开始时,统一+1转换为从1开始 2. **离散化处理**:当坐标范围过大时先进行离散化 3. **差分技巧**:处理区间更新操作 ```python # 给子矩阵(x1,y1)-(x2,y2)统一加delta bit.update(x1, y1, delta) bit.update(x1, y2+1, -delta) bit.update(x2+1, y1, -delta) bit.update(x2+1, y2+1, delta) ```
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值