全面本土化升级:结合本地知识库与大型模型,利用RAGFlow构建高效实用的医院医疗问诊助手!

使用Huggingface上的开源医疗数据集,借助 RAGFlow 搭建自己的本地医疗问诊助手。

原理:RAGFlow是一个基于对文档深入理解的开源 RAG(检索增强生成)引擎。它的作用是可以让用户创建自有知识库,根据设定的参数对知识库中的文件进行切块处理,用户向大模型提问时,RAGFlow先查找自有知识库中的切块内容,接着把查找到的知识库数据输入到对话大模型中再生成答案输出

ragflow最大特点:不同的解析方法,支持丰富的文件类型,如Word、PPT、excel表格、csv/txt、图片、PDF、结构化数据、网页等
具体可以在本地部署成功后,在解析方法中查看

接下来,开始进入使用阶段,起舞··

一 使用自带的 WSL 安装 Ubuntu-22.04 系统

什么是WSL?WSL(Windows Subsystem for Linux)是微软开发的一项技术,允许用户在Windows系统中直接运行完整的Linux环境,无需虚拟机。通过操作系统级虚拟化,WSL将Linux子系统无缝嵌入Windows,提供原生Linux命令行工具、软件包管理器及应用程序支持。它具有轻量化、文件系统集成、良好的交互性及开发效率提升等优点,消除了Windows与Linux之间的隔阂,尤其适合开发者和需在Windows平台上使用Linux工具的用户。

1 启用window子系统及虚拟化

控制面板->程序和功能->启用或关闭window功能 或者:
win + r 键入 OptionalFeatures,直接打开
提示:winver查看 windows 系统版本:

最后,重启电脑后生效

2 将wsl,升级为wsl2

参考文章:zhuanlan.zhihu.com/p/704855705
说明:win默认系统自带了wsl,直接管理员身份打开cmd执行相关操作

相关命令:

wsl --update #升级到最新版本(wsl2)``wsl --list --online # 查看所有可用的发行版``wsl --install -d Ubuntu-22.04 # 安装 Ubuntu-22.04 系统``wsl -l -v # 显示当前安装了哪些系统``wsl --set-default-version 2 #设置wsl默认版本为wsl2``wsl.exe --set-version Ubuntu-22.04 2 #设置Ubuntu-22.04为 wsl2``wsl.exe --set-version Ubuntu-22.04 1 #设置为wsl1``wsl -d Ubuntu-22.04 #登录到Ubuntu环境

建议:wsl升级并设置默认版本为wsl2

3 启动操作安装的linux
使用 wsl:在 cmd(或powershell)输入 wsl(或者:wsl -d Ubuntu-22.04)
cat /etc/os-release #查看 Linux 的版本

设置时区命令:

timedatectl # 检查当前设置的时区  
sudo timedatectl set-timezone Asia/Shanghai # 将时区设置为中国标准时间  
timedatectl # 确保时区已经正确设置

操作 Linux 文件:
windows 文件资源管理器-> Linux 的标志,点击 Linux 就可以

二 安装win桌面版docker

win桌面版 地址:
www.docker.com/products/docker-desktop/
下载完之后,按照提示,一直点就行了哈

提示:因为安装完成后镜像很大(44G左右),默认会安装在C盘,建议更改到其他空闲盘

更改方法:设置–>Resourses

以下本项目用不到,可以忽略,因为docker用的是win桌面版docker

linux (学习在ubuntu上安装docker和docker compose)

安装docker :
https://zhuanlan.zhihu.com/p/651148141

安装 docker compose:

curl -SL https://github.com/docker/compose/releases/download/v2.29.6/docker-compose-linux-x86_64 -o /usr/local/bin/docker-compose #下载 docker-compose程序包``sudo chmod +x /usr/local/bin/docker-compose #添加可执行权限``docker-compose -v #查看版本


三 部署启动ragflow

以下命令在git bash 中执行

ragflow仓库:
github.com/infiniflow/ragflow/blob/main/README_zh.md

软硬件要求:硬件:CPU ≥ 4 核 ; 内存≥ 16 GB; 磁盘空间 ≥ 50 GB; 软件:Docker版本 ≥ 24.0.0 ;Docker Compose 版本 ≥ v2.26.1

#查看版本``docker -v``docker compose version

启动部署服务器:

#1 克隆仓库``git clone https://github.com/infiniflow/ragflow.git``   ``#2 使用Docker镜像启动服务器(45 GB左右,约2小时左右)``修改./docker/.env的45行,把HF_ENDPOINT 设成相应的镜像站点``HF_ENDPOINT=https://hf-mirror.com``$ cd ragflow/docker``$ chmod +x ./entrypoint.sh``$ docker compose -f docker-compose.yml up -d``   ``# 3 确认服务器状态``docker logs -f ragflow-server

5 在浏览器中输入服务器对应的IP地址并登录RAGFlow (可在终端中用 ipconfig 查看ip)

点击signup注册,填入电邮地址和密码后,返回登录页,用刚刚注册的电邮地址和密码登录。

docker相关命令

sudo docker images # 查看镜像``docker ps # 列出正在运行的容器``# 进入名为 ragflow-server 的容器``docker exec -it ragflow-server /bin/bash``cd /ragflow``ls``# 退出容器``exit

相关bug:
bug1:无法正常下载(If inside mainland China)
解决1:修改./docker/.env的45行,把HF_ENDPOINT 设成相应的镜像站点

bug2: dependency failed to start: container ragflow-mysql is unhealthy
解决2:docker compose down -v #移除所有本地数据
docker compose up -d

四 安装本地大模型LLM

安装ollama(一步步点就行)
地址:https://www.ollama.com/

下载qwen2:7b模型(4.4GB)阿里的千问大模型对中文很友好,所以选择它
说明,ollama中有许多开源模型,都可自行本地下载

ollama list #列出模型``ollama run qwen2:7b #下载运行模型``ollama rm          #删除模型``ollama show  #显示模型信息

下载Embedding模型
说明:一个免费的中文的向量化模型

ollama pull shaw/dmeta-embedding-zh``ollama list

最后用浏览器打开 http://localhost:11434
可以看到页面中显示:Ollama is running

五 下载医疗数据集

地址:
huggingface.co/datasets/InfiniFlow/medical_QA

medical_QA(医疗问诊助手数据集),它基于 PubMed 的数百万英文医疗论文,以及一些其他数据集,涵盖多个不同领域具有代表性的专业医疗数据,借助于 Agent 机制,提供中文问诊对话服务
ChatMed_Consult-v0.3.CSV 医疗咨询
Internal medicine_QA_all.csv 内科_QA_all.CSV
Medical Oncology_QA_all.csv 医学肿瘤学_QA_all.CSV
OB GYN_QA_all.csv 妇产科_QA_all.CSV
Pediatrics_QA_all.csv 儿科_QA_all.CSV
Andrology QA.CSV 男科QA.CSV S
urgical_QA_all.csv 外科_QA_all.CSV

六 RAGFlow 的使用

首先登录ragflow,进入后点击右上角图标

1 添加下载的本地千问模型和向量化模型

模型均在“第四步”做了安装
qwen2:7b:做问答chat的大模型
shaw/dmeta-embedding-zh:做embedding的,本地知识做向量化索引的

点击添加模型->按照如下添加向量化模型

因为ragflow使用的是docker,而ollama是在本地运行的,所以基础url为
base URL:http://host.docker.internal:11434

添加成功发后结果如下

2 创建知识库
2.1点击上方知识库–>创建知识库

2.2添加配置文件 语言选择中文,嵌入模型选择自己下载的,解析方法选择Q&A

2.3新增文件->上传第五步下载的医疗数据集QA

说明:如果不能一起上传,就单个上传

3 开始解析,等待成功 上传后点击右边放启动按钮,开始解析,等待解析成功,我这里文件80M左右,大约90分钟
原理:将每个QA对做成向量,用于提问后的匹配检索

4 检索测试 简单测试下知识库的相关搜索性

七 功能测试与使用

1 聊天(添加助理)

聊天–>添加助理–>配置相关参数(模型选择qwen2:7b) -->确定

模型选择qwen2:7b

测试聊天效果

2后端api服务
说明:通过部署的本地知识库大模型,不仅可以自己使用,还可以通过api给其他应用使用
右键打开聊天api

创建密钥

3 使用python程序调用

文档地址:https://ragflow.io/docs/dev/api

代码效果测试:

如何学习AI大模型 ?

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。【保证100%免费】🆓

CSDN粉丝独家福利

这份完整版的 AI 大模型学习资料已经上传CSDN,朋友们如果需要可以扫描下方二维码&点击下方CSDN官方认证链接免费领取 【保证100%免费】

读者福利: 👉👉CSDN大礼包:《最新AI大模型学习资源包》免费分享 👈👈

(👆👆👆安全链接,放心点击)

对于0基础小白入门:

如果你是零基础小白,想快速入门大模型是可以考虑的。

一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以根据这些资料规划好学习计划和方向。

👉1.大模型入门学习思维导图👈

要学习一门新的技术,作为新手一定要先学习成长路线图,方向不对,努力白费。

对于从来没有接触过AI大模型的同学,我们帮你准备了详细的学习成长路线图&学习规划。可以说是最科学最系统的学习路线,大家跟着这个大的方向学习准没问题。(全套教程文末领取哈)
在这里插入图片描述

👉2.AGI大模型配套视频👈

很多朋友都不喜欢晦涩的文字,我也为大家准备了视频教程,每个章节都是当前板块的精华浓缩。

在这里插入图片描述
在这里插入图片描述

👉3.大模型实际应用报告合集👈

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(全套教程文末领取哈)

在这里插入图片描述

👉4.大模型落地应用案例PPT👈

光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。(全套教程文末领取哈)

在这里插入图片描述

👉5.大模型经典学习电子书👈

随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。(全套教程文末领取哈)
img

在这里插入图片描述

👉6.大模型面试题&答案👈

截至目前大模型已经超过200个,在大模型纵横的时代,不仅大模型技术越来越卷,就连大模型相关的岗位和面试也开始越来越卷了。为了让大家更容易上车大模型算法赛道,我总结了大模型常考的面试题。(全套教程文末领取哈)

在这里插入图片描述
👉学会后的收获:👈
基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习

CSDN粉丝独家福利

这份完整版的 AI 大模型学习资料已经上传CSDN,朋友们如果需要可以扫描下方二维码&点击下方CSDN官方认证链接免费领取 【保证100%免费】

读者福利: 👉👉CSDN大礼包:《最新AI大模型学习资源包》免费分享 👈👈

(👆👆👆安全链接,放心点击)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值