多智能体真不是概念股,github上top5多智能体框架总结!

gitbub上最火的5个多智能体框架MetaGPT、agno、ChatDev、owl、camel,截至今天star数分别为56.1k、27.7k、27.0k、16.8k、12.8k。每个都在1w star以上!

图片

五个多智能体项目具体差异如下所示:

  • MetaGPT侧重于用多智能体模拟人类团队协作开发软件
  • agno侧重于从智能体到多智能体全链路构建,并优化了智能体构建效率,
  • ChatDev与MetaGPT类似,不过额外引入多模态支持(比如引入设计师智能体切图)
  • owl侧重于解决现实世界的自动化任务,并且拥有丰富的工具组件。
  • camel侧重于找到agents领域的scaling laws,探索多智能体能力边界,并观察反思对应的行为。

当GPT学会团队协作:MetaGPT让AI像软件公司一样开发项目

一、小Demo:一句话生成2048游戏

试想,你只需输入一句“Create a 2048 game”,就能自动生成一个完整的游戏项目仓库,包含用户故事、代码架构、API文档等全流程产出。这不是科幻场景,而是MetaGPT的真实能力展示。
在这里插入图片描述

(图示:MetaGPT模拟软件公司协作流程,从需求到代码的全链路产出)

此外还可以构建AI狼人杀、AI辩论赛等场景。

二、领域背景:AI单干时代的瓶颈

在大语言模型(LLM)应用爆发的今天,单个GPT模型已能完成文本生成、代码编写等任务。但面对复杂项目——如开发一款APP、完成学术研究或数据分析——单模型往往力不从心:

  • 任务拆解难:复杂需求需拆分为产品设计、架构设计、编码测试等多环节,单模型难以连贯处理;
  • 专业深度不足:不同环节需要产品经理、架构师、工程师等角色的专业能力,单模型难以兼顾;
  • 协作效率低下:跨步骤的信息传递和逻辑衔接缺乏系统性,容易出现断层或错误。

三、MetaGPT的突破:让AI像团队一样工作

MetaGPT创新性地将软件公司的协作体系注入AI系统,通过多智能体(Multi-Agent)框架,让不同角色的GPT模拟人类团队协作,解决复杂任务。

核心能力与亮点

  1. 全流程自动化
    输入一句需求(如“开发一个在线商城”),MetaGPT自动完成:

    • 产品阶段:生成用户故事、竞品分析、需求文档;
    • 技术阶段:设计数据结构、API接口、编写代码;
    • 交付阶段:生成测试用例、部署文档。
      无需人工介入,实现从“想法”到“可运行项目”的一站式产出。
  2. 角色化协作体系
    内置虚拟团队角色:

    • 产品经理:解析需求,规划功能优先级;
    • 架构师:设计技术架构,制定开发规范;
    • 工程师:分模块编写代码,确保功能实现;
    • 项目经理:协调任务进度,把控质量。
      各角色通过标准化SOP(流程规范)协同,确保输出的专业性和连贯性。
  3. 多领域泛化能力
    不仅限于软件开发,还可应用于:

    • 数据分析:自动完成数据清洗、建模、可视化(如分析鸢尾花数据集并生成图表);
    • 学术研究:辅助文献综述、实验设计、论文撰写;
    • 商业策划:生成市场调研报告、商业计划书、运营方案。
  4. 学术与工业双重落地

    • 研究层面:相关论文《AFlow: Automating Agentic Workflow Generation》被ICLR 2025接收( oral presentation, top 1.8%),在LLM智能体领域排名全球第二;
    • 产品层面:推出自然语言编程工具MGX(mgx.dev),登顶Product Hunt周榜第一。

四、项目地址

https://github.com/geekan/MetaGPT

构建智能体系统的“瑞士军刀”:Agno如何重新定义多智能体开发?

一、小Demo

只需几行代码,就能让智能体调用财经工具分析英伟达(NVDA)数据:

from agno.agent import Agent
from agno.models.anthropic import Claude
from agno.tools.yfinance import YFinanceTools

agent = Agent(
    model=Claude(),
    tools=[YFinanceTools()],
    instructions="用表格展示数据"
)
agent.print_response("撰写NVDA报告")

运行后,智能体自动调用YFinance API获取股价、分析师评级等信息,并以结构化表格输出报告,全程无需手动处理工具调用逻辑。

多智能体调用也很简单,比如用户提出问题:

What’s the market outlook and financial performance of AI semiconductor companies?

代码如下:

from agno.agent import Agent
from agno.models.openai import OpenAIChat
from agno.tools.duckduckgo import DuckDuckGoTools
from agno.tools.yfinance import YFinanceTools
from agno.team import Team

web_agent = Agent(
    name="Web Agent",
    role="Search the web for information",
    model=OpenAIChat(id="gpt-4o"),
    tools=[DuckDuckGoTools()],
    instructions="Always include sources",
    show_tool_calls=True,
    markdown=True,
)

finance_agent = Agent(
    name="Finance Agent",
    role="Get financial data",
    model=OpenAIChat(id="gpt-4o"),
    tools=[YFinanceTools(stock_price=True, analyst_recommendations=True, company_info=True)],
    instructions="Use tables to display data",
    show_tool_calls=True,
    markdown=True,
)

agent_team = Team(
    mode="coordinate",
    members=[web_agent, finance_agent],
    model=OpenAIChat(id="gpt-4o"),
    success_criteria="A comprehensive financial news report with clear sections and data-driven insights.",
    instructions=["Always include sources", "Use tables to display data"],
    show_tool_calls=True,
    markdown=True,
)

agent_team.print_response("What's the market outlook and financial performance of AI semiconductor companies?", stream=True)

运行后,搜索智能体和金融智能体会分工协作,共同完成任务。

二、领域背景:智能体开发的“碎片化困境”

随着大语言模型应用深入,智能体开发面临三大挑战:

  1. 工具整合低效:调用不同模型(如Claude、GPT-4)和工具(如YFinance、DuckDuckGo)需编写大量适配代码;
  2. 复杂场景乏力:单智能体难以处理多模态输入(文本/图像/音频)或协作任务(如团队分工分析市场趋势);
  3. 性能与扩展性瓶颈:传统框架在创建大量智能体时延迟高、内存占用大,难以支撑工业级应用。

三、Agno的突破:全栈智能体开发框架的革新

Agno通过模型无关性、高性能架构、多智能体协同三大核心能力,打造从单体智能体到复杂工作流的一站式开发平台。

核心能力与亮点

  1. 模型与工具的“万能适配器”
    统一接口支持23+模型提供商(OpenAI、Anthropic等)和20+工具(YFinance、向量数据库等),开发者无需关心底层差异。例如,同一套代码可无缝切换Claude与GPT-4模型,或同时调用财经数据与网络搜索工具。

  2. 工业级性能:微秒级启动与轻量化内存

    • 单个智能体实例化仅需3微秒(比同类框架快10倍以上),内存占用低至6.5KB,可在单机上同时运行数万智能体;
    • 异步机制与工具调用并行化设计,显著提升复杂任务处理效率。
  3. 从单体到团队:智能体协作的“操作系统”

    • 单体智能体:支持多模态输入输出(文本/图像/音视频),内置推理工具(Chain-of-Thought)和结构化输出(JSON模式),确保复杂任务可靠性;
    • 智能体团队(Agent Teams):通过分工协作处理复合任务。例如,让“网络搜索智能体”获取行业动态,“金融分析智能体”处理数据,最终由“协调智能体”整合生成报告,模拟人类团队的高效配合。
  4. 全链路开发支持

    • 内置记忆与存储:为智能体配备长期记忆(Memory)和会话存储(Storage),支持上下文延续与历史数据复用;
    • 快速部署:自动生成FastAPI接口,一键将智能体部署为API服务;
    • 实时监控:通过agno.com平台可视化追踪智能体性能与会话状态,简化调试与优化流程。

四、项目地址

https://github.com/agno-agi/agno

当软件公司遇上智能体:ChatDev如何实现“代码自动生成革命”?

一、小Demo:用ChatDev开发2048游戏

只需一行命令python3 run.py --task "设计一个2048游戏" --name "2048",ChatDev的虚拟团队便开始协作:

  • CEO规划产品方向,CPO细化用户需求;
  • CTO设计技术架构,程序员生成代码;
  • 测试员自动检测漏洞,设计师输出UI素材。
    最终在WareHouse目录生成完整项目,包含可运行代码、设计文档与测试报告。

此外,以下这些项目都是用ChatDev开发:

在这里插入图片描述

二、领域背景:软件开发的“人力密集困境”

传统软件开发面临三大痛点:

  1. 流程碎片化:需求分析、设计、编码、测试等环节依赖不同角色协作,沟通成本高;
  2. 人才门槛高:中小企业难以组建全栈团队,个人开发者需兼顾多领域技能;
  3. 效率瓶颈:重复编码、手动测试等耗时环节占比超40%,创新迭代速度受限。

三、ChatDev的突破:构建“会写代码的虚拟公司”

与metagpt类似,ChatDev通过多智能体协作框架,将软件公司的组织模式注入AI系统,实现从需求到交付的全流程自动化。

核心能力与亮点

  1. 角色化智能体团队
    内置7大核心角色:

    • 决策层(CEO/CPO/CTO):制定战略、拆解任务、规划技术方案;
    • 执行层(程序员/设计师):按规范生成代码、设计素材;
    • 质量层(测试员/评审员):自动测试、代码审查。
      各角色通过标准化流程(如需求评审会、代码merge请求)协同,模拟真实公司的协作逻辑。
  2. 全流程自动化与可定制

    • 预设开发管线:支持“需求分析→编码→测试→发布”的默认流程,也可通过修改JSON配置自定义环节(如新增“用户调研”阶段);
    • 多模态支持:不仅生成代码(Python/JS等),还能调用设计师智能体生成UI图片,实现“代码+设计”一体化产出;
    • 增量开发与版本控制:支持基于现有代码迭代,集成Git模式管理版本,避免重复劳动。
  3. 学术前沿与工业落地结合

    • 提出Multi-Agent Collaboration Networks(MacNet),通过有向无环图支持超千个智能体协作,突破传统链式结构的上下文限制,适用于复杂项目(如大型系统设计、数据分析);
    • 发布**经验协同学习(ECL)迭代经验优化(IER)**模型,让智能体通过历史任务积累“开发经验”,减少重复错误,效率提升30%以上;
    • 提供SaaS平台(chatdev.modelbest.cn)与本地部署方案,降低使用门槛。
  4. 开源生态与社区支持

    • 提供可视化工具实时追踪智能体对话与任务进度,方便调试;
    • 社区已贡献数十个软件案例(如五子棋游戏、仓库管理系统),可直接复用配置文件;
    • 支持多语言(中英日等15种),适配不同开发者习惯。

四、项目地址

https://github.com/OpenBMB/ChatDev

智能体协作天花板:OWL如何让AI完成现实世界复杂任务自动化?

一、小Demo:用OWL分析气候变化推文情绪

输入任务“分析关于气候变化的最新推文情绪”,OWL的智能体团队将自动协作:

  • 搜索智能体调用DuckDuckGo获取最新相关推文;
  • 文本分析智能体使用情感分析工具处理数据;
  • 可视化智能体生成情绪分布图表。
    全程无需手动调用工具,最终输出结构化报告,包含正负情绪占比、高频关键词等。

在这里插入图片描述

二、领域背景:AI自动化的“碎片化工具困境”

在现实任务自动化领域,传统AI方案面临三大挑战:

  1. 工具调用低效:处理多步骤任务(如“爬取网页数据→分析→生成报告”)需手动串联搜索、代码执行、可视化等工具,开发成本高;
  2. 多模态处理割裂:文本、图像、视频等数据需依赖不同模型,缺乏统一协作框架;
  3. 复杂场景泛化不足:单智能体难以应对跨领域任务(如“用Python处理Excel数据并生成PPT图表”),需人工介入协调。
    随着任务复杂度提升,传统方案的效率瓶颈日益凸显,亟需能整合多工具、支持多模态的智能体协作框架。

三、OWL的突破:构建“全栈智能体协作操作系统”

OWL基于CAMEL-AI框架,通过动态智能体交互+标准化工具协议+多模态支持,实现从简单查询到复杂任务的全流程自动化。

核心能力与亮点

  1. 一站式工具生态系统
    内置50+专业工具包,覆盖**搜索(Google/DuckDuckGo)、多模态处理(图像/视频分析)、代码执行(Python解释器)、文档解析(PDF/Excel)**等领域。例如:

    • BrowserToolkit模拟浏览器操作,自动填写表单、下载文件;
    • 通过VideoAnalysisToolkit提取视频中的物体识别结果;
    • 借助CodeExecutionToolkit实时运行并调试Python代码。
      所有工具通过**模型上下文协议(MCP)**标准化交互,智能体可按需自动调用,无需人工编写适配代码。
  2. 多智能体动态协作架构

    • 任务拆解:输入任务后,OWL自动生成智能体协作链。例如“制作旅游攻略”任务,会触发搜索智能体获取景点数据、规划智能体设计路线、可视化智能体生成地图;
    • 跨模态协同:支持文本智能体与视觉智能体联动。如分析图片中的财报数据时,ImageAnalysisToolkit提取文本,ExcelToolkit解析表格,MathToolkit进行数据计算;
    • 大规模扩展:基于CAMEL的MacNet技术,支持超千个智能体通过有向无环图协作,突破传统链式结构的规模限制。
  3. 工业级性能与兼容性

    • 模型无关性:支持OpenAI(GPT-4)、Anthropic(Claude)、Google(Gemini)等20+模型,一键切换底层引擎;
    • 高性能执行:智能体启动仅需微秒级,内存占用低于10KB,支持单机运行数万并发任务;
    • 多语言支持:原生适配中文、英文、日文等多语种任务,自动处理跨语言工具调用。
  4. 学术领先与实战验证

    • 在GAIA基准测试中以58.18分位居开源框架第一,超越同类工具;
    • 支持复现论文《OWL: Optimized Workforce Learning》中的协作机制,为研究多智能体集体智能提供标准化平台;
    • 社区已落地电商数据分析、学术文献综述、自动化报告生成等场景,效率提升40%以上。

四、项目地址

https://github.com/camel-ai/owl

探索智能体扩展规律:CAMEL如何开启多智能体研究新范式?

一、应用Demo:由100万个智能体组成的社交媒体模拟器

CAMEL框架的衍生产品OASIS是一个可扩展的开源社交媒体模拟器,它结合了大型语言模型代理,以逼真地模拟Twitter和Reddit等平台上多达100万用户的行为。它旨在促进对复杂社会现象的研究,例如信息传播、群体两极分化和从众行为,为探索数字环境中的各种社会动态和用户互动提供多功能工具。
在这里插入图片描述

二、领域背景:多智能体研究的“规模化瓶颈”

在人工智能领域,多智能体系统(MAS)的研究面临三大核心挑战:

  1. 规模化难题:传统框架难以支持超大规模智能体协作(如百万级智能体),无法模拟复杂社会系统的涌现行为;
  2. 动态交互缺失:多数工具缺乏智能体间实时通信与协作机制,难以研究任务分工、资源竞争等动态关系;
  3. 数据与评估匮乏:缺乏标准化的多智能体基准测试与大规模合成数据集,导致研究成果难以复现和比较。

三、CAMEL的突破:构建多智能体研究的“操作系统”

CAMEL(Communicative Agents for “Mind” Exploration)作为开源社区与框架,旨在通过可进化架构、大规模仿真、标准化工具链,推动多智能体系统的前沿研究。

核心能力与亮点

  1. 百万级智能体规模化仿真

    • 支持模拟100万+智能体的复杂社会系统,通过分布式架构优化通信与资源管理,可研究智能体数量与协作效率的关联规律;
    • 内置“AI社会”“代码协作”“科学探索”等场景,复现智能体在分工、竞争、合作中的涌现行为(如任务分配策略、知识传播路径)。
  2. 动态通信与状态记忆

    • 智能体具备有状态记忆,可保存历史对话与任务进度,支持多轮交互中的上下文理解(如代码调试中的错误追踪);
    • 实现智能体间实时消息传递,支持发布-订阅、点对点等通信模式,适用于供应链管理、应急响应等动态协作场景。
  3. 标准化工具链与数据生成

    • 多模态工具集成:支持代码执行、网络搜索、文档解析等50+工具,智能体可自动调用工具完成复杂任务(如“搜索财报数据→生成分析图表→撰写报告”);
    • 大规模数据生成:通过智能体协作自动生成结构化数据集(如数学推理、科学问答),支持自监督学习与模型微调,已发布10亿级“AI社会”对话数据集;
    • 基准测试平台:提供GAIA等标准化评估套件,可量化智能体在协作效率、任务完成度、鲁棒性等维度的表现。
  4. 跨学科研究生态

    • 支持构建角色扮演智能体(如医生-患者、教师-学生)、workforce智能体团队(如项目管理-开发-测试)、具身智能体(如机器人导航协作)等多种类型;
    • 提供教程与案例库,覆盖金融分析、科学发现、自动化报告等场景,降低研究门槛;
    • 社区汇聚100+研究者,推动可信智能体、智能体伦理等前沿方向探索,发布OASIS、CRAB等子项目。

如何学习AI大模型 ?

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。【保证100%免费】🆓

CSDN粉丝独家福利

这份完整版的 AI 大模型学习资料已经上传CSDN,朋友们如果需要可以扫描下方二维码&点击下方CSDN官方认证链接免费领取 【保证100%免费】

读者福利: 👉👉CSDN大礼包:《最新AI大模型学习资源包》免费分享 👈👈

(👆👆👆安全链接,放心点击)

对于0基础小白入门:

如果你是零基础小白,想快速入门大模型是可以考虑的。

一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以根据这些资料规划好学习计划和方向。

👉1.大模型入门学习思维导图👈

要学习一门新的技术,作为新手一定要先学习成长路线图,方向不对,努力白费。

对于从来没有接触过AI大模型的同学,我们帮你准备了详细的学习成长路线图&学习规划。可以说是最科学最系统的学习路线,大家跟着这个大的方向学习准没问题。(全套教程文末领取哈)
在这里插入图片描述

👉2.AGI大模型配套视频👈

很多朋友都不喜欢晦涩的文字,我也为大家准备了视频教程,每个章节都是当前板块的精华浓缩。
在这里插入图片描述

在这里插入图片描述

👉3.大模型实际应用报告合集👈

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(全套教程文末领取哈)

在这里插入图片描述

👉4.大模型实战项目&项目源码👈

光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战项目来学习。(全套教程文末领取哈)
在这里插入图片描述

👉5.大模型经典学习电子书👈

随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。(全套教程文末领取哈)
在这里插入图片描述

👉6.大模型面试题&答案👈

截至目前大模型已经超过200个,在大模型纵横的时代,不仅大模型技术越来越卷,就连大模型相关的岗位和面试也开始越来越卷了。为了让大家更容易上车大模型算法赛道,我总结了大模型常考的面试题。(全套教程文末领取哈)
在这里插入图片描述

为什么分享这些资料?

只要你是真心想学AI大模型,我这份资料就可以无偿分享给你学习,我国在这方面的相关人才比较紧缺,大模型行业确实也需要更多的有志之士加入进来,我也真心希望帮助大家学好这门技术,如果日后有什么学习上的问题,欢迎找我交流,有技术上面的问题,我是很愿意去帮助大家的!

这些资料真的有用吗?

这份资料由我和鲁为民博士共同整理,鲁为民博士先后获得了北京清华大学学士和美国加州理工学院博士学位,在包括IEEE Transactions等学术期刊和诸多国际会议上发表了超过50篇学术论文、取得了多项美国和中国发明专利,同时还斩获了吴文俊人工智能科学技术奖。目前我正在和鲁博士共同进行人工智能的研究。

资料内容涵盖了从入门到进阶的各类视频教程和实战项目,无论你是小白还是有些技术基础的,这份资料都绝对能帮助你提升薪资待遇,转行大模型岗位。

在这里插入图片描述
在这里插入图片描述

CSDN粉丝独家福利

这份完整版的 AI 大模型学习资料已经上传CSDN,朋友们如果需要可以扫描下方二维码&点击下方CSDN官方认证链接免费领取 【保证100%免费】

读者福利: 👉👉CSDN大礼包:《最新AI大模型学习资源包》免费分享 👈👈

(👆👆👆安全链接,放心点击)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值