成功解决TypeError: ‘float‘ object cannot be interpreted as an integer

本文探讨了在Python中使用forwinrange函数时遇到的TypeError,原因在于range函数参数需为整数。提供了两种解决方案:将小数转换为整数或将range替换为numpy.arange,同时解释了2.4000000000000004出现的精度问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

问题描述:

在使用Python的for w in range(0.0, 4.1, 0.1):时遇到报错:
TypeError: 'float' object cannot be interpreted as an integer
在这里插入图片描述
为什么会出现这种错误呢?因为Python的函数range(start, stop[, step])中start,stop,step都是整数,当使用了小数就会报错。

range参数说明:

start: 计数从 start 开始。默认是从 0 开始。例如range(5)等价于range(0, 5);
stop: 计数到 stop 结束,但不包括 stop。例如:range(0, 5) 是[0, 1, 2, 3, 4]没有5
step:步长,默认为1。例如:range(0, 5) 等价于 range(0, 5, 1)

解决方法:

究其原因,无非是你range里使用了小数,所以解决方法很简单,无非就是两种:
要么就把range里的参数变为整数要不就换一种支持小数的写法

一、如果你是下面这种情况:

for i in range(10/3):
    print(i)

那么解决方法很简单,直接把/换成//
因为Python2中的/只保留整数部分,是int型。而在Python3里,/的结果是真正意义上的除法得到的是一个小数,结果是float型,所以用//得到一个整数问题就得以解决。

二、如果你不想做任何改变仍要使用range的功能,那么可以使用numpy中提供的arange

for i in range(0.0, 4.1, 0.8):
    print(i)

#会报错:
Traceback (most recent call last):
  File ".code.tio", line 2, in 
    for i in range(0.0, 4.1, 0.8):
TypeError: 'float' object cannot be interpreted as an integer

解决方法:

import numpy
for i in numpy.arange(0.0, 4.1, 0.8):
    print(i)

#输出结果:
0.0
0.8
1.6
2.4000000000000004
3.2
4.0

题外话:
为什么会出现2.4000000000000004呢?
计算机中所有的数据最终都是以二进制的形式存储的,小数在转换为二进制表示的时候会出现位数无限循环的情况,所以只能存储有限位数,超过这个长度的位数会被舍去(会采用 0舍1入 的方式),这样就造成了精度丢失的问题。

### 合适于Jetson平台部署的YOLO开源项目 对于希望在NVIDIA Jetson平台上部署YOLO模型的应用开发者而言,有几个优秀的开源项目可以考虑。这些项目不仅提供了高效的推理性能优化,还针对Jetson硬件特性进行了特别调整。 #### 1. YOLOv4-Tiny TensorRT 实现 此版本通过TensorRT加速框架对YOLOv4-tiny网络结构做了专门优化,在保持较高检测精度的同时显著提升了运行速度[^3]。该实现支持多种输入分辨率,并且能够充分利用Jetson系列设备中的GPU计算能力来加快推断过程。 #### 2. yolov5-jetson-nano 这是一个专门为Jetson Nano设计并测试过的YOLOv5移植版。它简化了安装流程并通过预训练权重文件使得快速上手变得容易。此外,该项目文档详尽,涵盖了从环境配置到实际应用开发所需的各种细节说明[^4]。 #### 3. DeepStream SDK集成YOLO插件 DeepStream是由NVIDIA推出的一个用于构建高性能视频分析应用程序的强大工具集。其中包含了可以直接使用的YOLO目标检测插件,允许用户轻松创建基于边缘AI的产品原型或生产级解决方案。由于其高度定制化的API接口以及良好的社区支持,成为了很多专业人士首选方案之一[^5]。 ```python import jetson.inference import jetson.utils net = jetson.inference.detectNet("ssd-mobilenet-v2", threshold=0.5) camera = jetson.utils.videoSource("/dev/video0") # '/dev/video0' for V4L2 display = jetson.utils.videoOutput("display://0") # 'my_video.mp4' for file while display.IsStreaming(): img = camera.Capture() detections = net.Detect(img) display.Render(img) display.SetStatus("Object Detection | Network {:.0f} FPS".format(net.GetNetworkFPS())) ```
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

若年封尘

你的鼓励将是我创作的最大动力!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值