51nod 1133 不重叠的线段 贪心

本文介绍了一种基于贪心策略解决线段选择问题的方法。通过将线段终点进行升序排序,实现对线段的最大数量选择。代码示例清晰展示了算法实现过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目链接:https://www.51nod.com/onlineJudge/questionCode.html#!problemId=1133

题目:

X轴上有N条线段,每条线段有1个起点S和终点E。最多能够选出多少条互不重叠的线段。(注:起点或终点重叠,不算重叠)。
例如:[1 5][2 3][3 6],可以选[2 3][3 6],这2条线段互不重叠。
Input
第1行:1个数N,线段的数量(2 <= N <= 10000)
第2 - N + 1行:每行2个数,线段的起点和终点(-10^9 <= S,E <= 10^9)
Output
输出最多可以选择的线段数量。


对终点升序排序,然后贪心。

#include <iostream>
#include<bits/stdc++.h>
#define N 11000
using namespace std;

struct node
{
    int x,y;
}a[N];

bool cmp(node a,node b)
{
    return a.y<b.y;
}

int main()
{
    int n;
    scanf("%d",&n);
    for(int i=0;i<n;i++)
        scanf("%d%d",&a[i].x,&a[i].y);
    sort(a,a+n,cmp);
    int ans=1;
    int ed=a[0].y;
    for(int i=0;i<n;i++)
    {
        if(a[i].x>=ed)
        {
            ans++;
            ed=a[i].y;
        }
    }
    cout<<ans<<endl;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值