题目链接:https://www.51nod.com/onlineJudge/questionCode.html#!problemId=1278
题目:
平面上有N个圆,他们的圆心都在X轴上,给出所有圆的圆心和半径,求有多少对圆是相离的。
例如:4个圆分别位于1, 2, 3, 4的位置,半径分别为1, 1, 2, 1,那么{1, 2}, {1, 3} {2, 3} {2, 4} {3, 4}这5对都有交点,只有{1, 4}是相离的。
Input
第1行:一个数N,表示圆的数量(1 <= N <= 50000) 第2 - N + 1行:每行2个数P, R中间用空格分隔,P表示圆心的位置,R表示圆的半径(1 <= P, R <= 10^9)
Output
输出共有多少对相离的圆。
先对终点排序,然后二分找终点大于起点的圆。
#include <iostream>
#include<bits/stdc++.h>
#define N 55000
#define INF 0x7ffffff
#define LL long long
using namespace std;
struct node
{
LL x,y;
}a[N];
bool cmp(node a,node b)
{
return a.y<b.y;
}
LL _find(LL l,LL r,LL t)
{
while(l<r)
{
LL mid=(l+r)>>1;
if(a[mid].y>=t) r=mid-1;
else l=mid+1;
}
while(l>0&&a[l].y>=t) l--;
return l;
}
int main()
{
LL n;
scanf("%lld",&n);
for(int i=1;i<=n;i++)
{
LL p,r;
scanf("%lld%lld",&p,&r);
a[i].x=p-r;
a[i].y=p+r;
}
a[0].x=a[0].y=-INF;
sort(a,a+n+1,cmp);
LL ans=0;
for(LL i=1;i<=n;i++)
ans+=_find(0,i-1,a[i].x);
cout<<ans<<endl;
}