51nod 1278 相离的圆

本文介绍了一种解决计算平面上圆心位于X轴上的多个圆中相离圆对数量的问题的方法。通过先对圆的右边界进行排序,再使用二分查找找到左边界大于已知右边界的圆,从而高效地计算出相离圆对的总数。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目链接:https://www.51nod.com/onlineJudge/questionCode.html#!problemId=1278

题目:

平面上有N个圆,他们的圆心都在X轴上,给出所有圆的圆心和半径,求有多少对圆是相离的。
例如:4个圆分别位于1, 2, 3, 4的位置,半径分别为1, 1, 2, 1,那么{1, 2}, {1, 3} {2, 3} {2, 4} {3, 4}这5对都有交点,只有{1, 4}是相离的。
Input
第1行:一个数N,表示圆的数量(1 <= N <= 50000)
第2 - N + 1行:每行2个数P, R中间用空格分隔,P表示圆心的位置,R表示圆的半径(1 <= P, R <= 10^9)
Output
输出共有多少对相离的圆。


先对终点排序,然后二分找终点大于起点的圆。

#include <iostream>
#include<bits/stdc++.h>
#define N 55000
#define INF 0x7ffffff
#define LL long long
using namespace std;

struct node
{
    LL x,y;
}a[N];

bool cmp(node a,node b)
{
    return a.y<b.y;
}

LL _find(LL l,LL r,LL t)
{
    while(l<r)
    {
        LL mid=(l+r)>>1;
        if(a[mid].y>=t) r=mid-1;
            else    l=mid+1;
    }
    while(l>0&&a[l].y>=t)    l--;
    return l;
}

int main()
{
    LL n;
    scanf("%lld",&n);
    for(int i=1;i<=n;i++)
    {
        LL p,r;
        scanf("%lld%lld",&p,&r);
        a[i].x=p-r;
        a[i].y=p+r;
    }
    a[0].x=a[0].y=-INF;
    sort(a,a+n+1,cmp);
    LL ans=0;
    for(LL i=1;i<=n;i++)
        ans+=_find(0,i-1,a[i].x);
    cout<<ans<<endl;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值