一、线性规划
1、线性规划简介
线性规划是运筹学中用于资源最优分配的数学方法,在约束条件下求解目标函数的最大值或最小值,其特点在于目标函数和约束条件均为线性关系。
核心要素:
【1】决策变量(x1,x2,…,xnx1,x2,…,xn)
待优化的未知量(如生产数量、投资金额)。
【2】目标函数
需最大化或最小化的线性表达式(如利润 Z=3x1+5x2Z=3x1+5x2)。
【3】约束条件
限制决策变量的线性不等式或等式(如 2x1+x2≤1002x1+x2≤100)。
2、图解法
线性规划的图解法是一种直观的几何求解方法,适用于包含两个决策变量的优化问题(若涉及三个变量,需三维坐标系,但实际应用较少)。其核心思想是通过绘制约束条件形成的可行域,并在可行域的顶点中寻找目标函数的最优解。
示例-1:
在如下线性约束下:
2x + 3y <= 30
x + 2y >= 10
x >= y
x > = 5
y >= 0
目标函数2x + 3y的极小值是多少?(17.5)