软考应用数学:线性规划和动态规划

一、线性规划

1、线性规划简介

线性规划是运筹学中用于资源最优分配的数学方法,在约束条件下求解目标函数的最大值或最小值,其特点在于目标函数和约束条件均为线性关系。

核心要素:

【1】决策变量(x1,x2,…,xnx1​,x2​,…,xn​)

 待优化的未知量(如生产数量、投资金额)。

【2】目标函数

 需最大化或最小化的线性表达式(如利润 Z=3x1+5x2Z=3x1​+5x2​)。

【3】约束条件

 限制决策变量的线性不等式或等式(如 2x1+x2≤1002x1​+x2​≤100)。

2、图解法

线性规划的图解法是一种直观的几何求解方法,适用于包含两个决策变量的优化问题(若涉及三个变量,需三维坐标系,但实际应用较少)。其核心思想是通过绘制约束条件形成的可行域,并在可行域的顶点中寻找目标函数的最优解。

示例-1:

在如下线性约束下:                              

2x + 3y <= 30

x + 2y >= 10

x >= y

x > = 5

y >= 0

目标函数2x + 3y的极小值是多少?(17.5)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

数字化与智能化

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值