
数据采集处理分析与可视化
文章平均质量分 94
数据采集处理分析与可视化
BigDataMagician
CSDN大数据领域优质创作者、CSDN博客专家认证获得者,具备扎实的技术背景与丰富的教学经验。持有软件设计师资格认证,现任高校讲师,专注于大数据技术与数据分析领域的教学与研究,同时具备前后端开发能力。
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
豆瓣图书数据采集与可视化分析(四)- 豆瓣图书数据可视化(Pyecharts)
本文围绕豆瓣图书数据展开可视化分析,通过 Python 的 Pyecharts 库实现多维度数据的直观呈现。首先基于评分分布、价格区间、出版社规模等六类分析结果,分别采用条形图、饼图、词云图等可视化形式,清晰展示了图书评分分布、价格区间占比、出版社图书数量规模等数据特征。例如,通过环形玫瑰图呈现价格区间与图书数量的占比关系,利用词云图直观对比各出版社的图书出版规模。进一步将单图表整合成可视化大屏,通过网格布局配置实现六张图表的有序排列,并添加深蓝到紫蓝的渐变背景、亮青色标题等设计,增强科技感与视觉统一性。原创 2025-06-13 13:20:35 · 283 阅读 · 0 评论 -
豆瓣图书数据采集与可视化分析(三)- 豆瓣图书数据统计分析(Pandas)
本项目旨在通过对豆瓣图书数据集的详细分析,挖掘其中隐藏的规律和趋势,为图书出版行业、读者以及相关研究人员提供有价值的参考。从数据读取与保存这一基础环节出发,构建了完善的数据处理流程,确保能够高效地获取和存储清洗后的高质量数据,为后续分析筑牢根基。在数据分析阶段,从多个维度展开深入探究。在不同分类统计分析中,详细剖析了各类图书在数量、平均评分、平均评价人数以及平均价格等方面的表现,有助于出版方精准把握市场需求,读者快速定位感兴趣的图书类别。原创 2025-04-25 17:26:38 · 1148 阅读 · 0 评论 -
豆瓣图书数据采集与可视化分析(二)- 豆瓣图书数据清洗与处理
本项目围绕豆瓣图书数据集展开,详细阐述了从数据的初步查看、各列数据的处理(包括拆分、格式转换、异常值处理等),到缺失值和重复值的处理,以及最终将处理后的数据保存到数据库的整个过程。原创 2025-04-20 17:38:37 · 304 阅读 · 0 评论 -
豆瓣图书数据采集与可视化分析(一)- 豆瓣图书数据爬取
本项目将通过数据爬取技术,深入挖掘豆瓣图书分类标签页面以及各分类下的图书详细页面,采集关键信息,并运用合理的数据处理手段对采集到的数据进行清洗、整合,最终形成高质量的数据集。希望通过此次实践,不仅能为后续针对图书数据的分析与应用搭建良好的数据基石,也能为对数据采集与处理感兴趣的同行提供有价值的参考与借鉴,共同探索数据背后的无限可能,进一步推动图书相关领域在数据驱动下的创新发展。原创 2025-04-19 15:10:41 · 716 阅读 · 0 评论