- In statistical analysis of binary classification, the F1 score (also F-score or F-measure) is a measure of a test’s accuracy. It considers both the precision p and the recall r of the test to compute the score: p is the number of correct positive results divided by the number of all positive results, and r is the number of correct positive results divided by the number of positive results that should have been returned. The F1 score can be interpreted as a weighted average of the precision and recall, where an F1 score reaches its best value at 1 and worst at 0.
- The traditional F-measure or balanced F-score (F1 score) is the harmonic mean of precision and recall — multiplying the constant of 2 scales the score to 1 when both recall and precision are 1:
- The general formula for positive real β is:
- The formula in terms of Type I and type II errors:
- In statistical hypothesis testing, a type I error is the incorrect rejection of a true null hypothesis (a “false positive”), while a type II error is incorrectly retaining a false null hypothesis (a “false negative”).[1] More simply stated, a type I error is the (false) detection of an effect that is not present, while a type II error is the failure to detect an effect that is present.
F1-Score
最新推荐文章于 2025-07-09 21:37:50 发布