
大模型RAG高阶面试指南
文章平均质量分 90
大模型RAG高阶面试指南
强化学习曾小健3
"主号:强化学习曾小健;副号:强化学习曾小健2、强化学习曾小健3、我是机器人曾小健具身"都是该号副号。CSDN全站80强博客、总近500w+浏览。AI生成式技术,计算机博士;llama3、Baichuan2、Qwen、GLM-4等等项目贡献人(ArtificialZeng)。这个博客的主题主要是强化学习技术、AI生成式技术、大模型多模态技术、机器人具身智能控制技术、机器/深度学习论文或科研前沿、GNN图神经网络、神经网络,包括人工神经网络和生物神经网络,及其大脑演化,智能和认知的产生,通用人工智能;
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
大模型RAG面试:第四章:RAG关键技术深度剖析:生成器(Generator)与增强(Augmentation)
深入探讨RAG系统中生成器(Generator)与增强(Augmentation)相关的关键技术,包括大型语言模型的应用、Prompt工程的最佳实践、上下文管理与融合策略,以及RAG的微调方法。在检索增强生成(RAG)系统中,检索器(Retriever)负责从知识库中召回相关信息片段,而生成器(Generator),通常是一个大型语言模型(LLM),则负责理解这些检索到的信息(上下文)以及用户原始查询,并基于此生成最终的、高质量的答案。增强(Augmentation)过程则是指如何有效地将检索到的知识组织并原创 2025-05-28 17:22:46 · 88 阅读 · 0 评论 -
大模型RAG高阶面试指南:第三章:RAG关键技术深度剖析:检索器(Retriever)
向量嵌入(Vector Embedding)是将离散的、高维的数据(如文本、图像、音频)映射到低维、连续的向量空间中的稠密向量(Dense Vector)的过程。这些向量,也称为嵌入向量或特征向量,旨在捕捉输入数据的核心语义特征。原创 2025-05-27 17:24:05 · 179 阅读 · 0 评论 -
第二章:RAG的核心原理与基本架构
RAG系统的工作流程是理解其核心原理的关键。一个典型的RAG系统通过精心设计的多步骤流程,将外部知识与大型语言模型的生成能力有机结合,从而产生准确、相关且具有事实依据的回答。本章将概览RAG的核心步骤,并对各组件进行初步阐述,为后续章节(第三章 检索器深度剖析, 第四章 生成器与增强)对各组件的深入剖析奠定基础。一个基本的RAG流程可以概括为:用户提出查询后,系统首先对查询进行预处理和编码,然后利用编码后的查询在预先构建好的知识库索引中检索相关信息片段。检索到的信息片段经过后处理和筛选。原创 2025-05-27 17:16:00 · 138 阅读 · 0 评论 -
大模型RAG高阶面试指南:第一章:RAG绪论
检索增强生成(Retrieval Augmented Generation,简称RAG)是一种结合了信息检索和文本生成的人工智能技术。它通过在生成过程中动态检索相关信息来增强大型语言模型的能力,从而提供更准确、更及时、更可靠的回答。RAG的核心思想是将"参数化知识"(存储在模型参数中的知识)与"非参数化知识"(存储在外部知识库中的知识)相结合,通过检索机制动态获取相关信息,然后将这些信息作为上下文提供给生成模型,以产生更高质量的输出。Q1: 请简单解释什么是RAG(检索增强生成)?原创 2025-05-27 17:01:45 · 404 阅读 · 0 评论 -
大模型RAG高阶面试指南:目录大纲
本书旨在为准备大模型RAG领域高阶职位的技术人员提供一套全面的面试准备指南。借鉴《百面深度学习》等系列书籍的风格,本书将核心知识点与大量模拟面试问答相结合,帮助读者系统性地梳理RAG的理论基础、核心技术、高级架构、评估优化及实际应用,提升应对技术面试的综合能力。原创 2025-05-27 16:53:43 · 212 阅读 · 0 评论