多模态大模型(LMMs)与大语言模型(LLMs)的比较

大家好,我是大 F,深耕AI算法十年,互联网大厂技术岗。分享AI算法干货、技术心得。

欢迎关注《大模型理论和实战》《DeepSeek技术解析和实战》,一起探索技术的无限可能!

前言

现在的大模型分为两大类:大语言模型(Large Language Models,简称LLMs)和多模态大模型(Large Multimodal Models,简称LMMs)。本文将从基础定义、输入数据、应用场景、训练过程这几方面讨论下两者的区别。

基础定义

  1. LLMs (Large Language Models, 大型语言模型) - 深度学习的应用之一,是基于深度学习的大规模机器学习模型,通常由数十亿到数万亿个参数构成,专门设计用于处理自然语言处理任务。这类模型通过在大型文本语料库上进行训练,学会理解语言的结构、语义、语境和语用等方面。
  2. LMMs(Large Multimodal Mod
### lmms-eval评估报告概述 lmms-eval的出现标志着多模态模型评估进入了一个新时代[^1]。这一工具提供了一套统一的标准来衡量不同类型的多模态学习模型的表现,从而提高了研究效率并促进了跨团队的合作竞争。 #### 用户体验反馈 用户对于lmms-eval的整体评价积极正面。许多研究人员表示,这套新的评估体系使得比较各种模型变得更加直观简单,并且能够更好地识别出哪些特定领域内表现优异或是存在不足之处。此外,随着越来越多的研究人员参到该平台上来开发新功能或改进现有算法,社区内的协作氛围也日益浓厚。 #### 技术细节应用案例 具体来说,在实际操作过程中,lmms-eval通过一系列精心设计的任务来全面考察目标模型的各项技能。例如,在处理图像理解任务时,除了传统的分类准确性外,还会关注模型能否正确解释复杂的场景描述;而在自然语言处理方面,则会检验其是否具备足够的上下文感知能力和逻辑推理水平。这些细致入微的设计确保了最终得出的结果既具有广泛适用性又不失深度洞察力[^3]。 ```python # 示例代码展示如何使用lmms-eval库进行基本评估 import lmms_eval as le def evaluate_model(model, dataset): evaluator = le.Evaluator() results = evaluator.run_evaluation(model=model, data=dataset) return results['accuracy'], results['precision'] acc, prec = evaluate_model(my_multimodal_model, test_dataset) print(f"Accuracy: {acc}, Precision: {prec}") ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

大F的智能小课

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值