引言:为什么LLM需要数据桥梁?
2023年,大语言模型(LLM)在通用领域展现了惊人能力,但在企业私有数据场景中却频频碰壁:
- 数据隔离:企业内部文档、数据库、API无法直接接入LLM
- 实时性不足:GPT-4的知识截止到2023年10月,无法处理实时订单数据
- 成本失控:微调千亿参数模型的成本让中小企业望而却步
LlamaIndex的破局之道:通过构建高效索引层,在不修改LLM本体的前提下,实现外部数据与LLM的无缝交互。其核心设计哲学可用一个公式概括:
LLM的通用能力 + 领域数据 = 垂直场景智能体
一、LlamaIndex技术全景解析
1.1 核心定位:LLM的「长期记忆系统」
与传统数据库不同,LlamaIndex专为LLM设计,解决三大关键问题:
- 数据形态适配:将非结构化文本(PDF/PPT)、结构化数据(SQL)、API响应统一转化为LLM可理解的向量表示
- 检索效率优化:通过分层索引(向量+关键词+图)实现亚秒级响应
- 上下文管理