【实操篇 RAG 】万字长文 | LlamaIndex:大语言模型私有化部署【实操指南】

引言:为什么LLM需要数据桥梁?

2023年,大语言模型(LLM)在通用领域展现了惊人能力,但在企业私有数据场景中却频频碰壁:

  • 数据隔离:企业内部文档、数据库、API无法直接接入LLM
  • 实时性不足:GPT-4的知识截止到2023年10月,无法处理实时订单数据
  • 成本失控:微调千亿参数模型的成本让中小企业望而却步

LlamaIndex的破局之道:通过构建高效索引层,在不修改LLM本体的前提下,实现外部数据与LLM的无缝交互。其核心设计哲学可用一个公式概括:

LLM的通用能力 + 领域数据 = 垂直场景智能体

一、LlamaIndex技术全景解析

1.1 核心定位:LLM的「长期记忆系统」

与传统数据库不同,LlamaIndex专为LLM设计,解决三大关键问题:

  1. 数据形态适配:将非结构化文本(PDF/PPT)、结构化数据(SQL)、API响应统一转化为LLM可理解的向量表示
  2. 检索效率优化:通过分层索引(向量+关键词+图)实现亚秒级响应
  3. 上下文管理
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

大F的智能小课

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值