RAGentA: Multi-Agent Retrieval-Augmented Generation for Attributed Question Answering

Accepted at SIGIR 2025

作者:our, Jingbo He, Tobias Schreieder, Michael Färber

https://github.com/faerber-lab/RAGentA

features

  • Multi-Agent Architecture: Uses multiple specialized agents for document retrieval, relevance judgment, answer generation, and claim analysis
  • Hybrid Retrieval: Combines semantic (dense) and keyword (sparse) search for better document retrieval (AWS account with access to OpenSearch and Pinecone (for hybrid retrieval))
  • Citation Track
### 关于 LightRAG 的代码实现 LightRAG 是一种将图结构引入文本索引的方法,旨在通过构建图结构捕捉实体间的复杂关系。这种方法允许系统更高效地处理复杂的多跳查询,特别是在涉及多个文档段落的情况下[^1]。 尽管目前没有直接提及具体的 LightRAG 实现细节或官方代码库的信息,但从其描述来看,可以推测其实现有赖于以下几个关键技术点: #### 1. 图结构的构建 为了支持高效的多跳查询,LightRAG 需要先构建一个基于实体和关系的图结构。这种图可以通过以下方式实现: - 使用 Python 中的 `networkx` 库来创建和操作图数据结构。 - 将实体作为节点,关系作为边存储在图中。 以下是简单的图构建示例代码: ```python import networkx as nx # 创建有向图 G = nx.DiGraph() # 添加节点(实体) G.add_node("Entity_A", type="Person") G.add_node("Entity_B", type="Location") # 添加边(关系) G.add_edge("Entity_A", "Entity_B", relation="visited") # 输出图信息 print(G.nodes(data=True)) print(G.edges(data=True)) ``` #### 2. 文本索引与检索 LightRAG 结合了双层次检索模式,这意味着它可能依赖某种形式的倒排索引来加速文本匹配过程。具体来说,可以利用 Elasticsearch 或 FAISS 来完成这一部分功能。 FAISS 示例代码如下: ```python import faiss import numpy as np # 构建索引 dimension = 128 # 嵌入维度 index = faiss.IndexFlatL2(dimension) # 插入嵌入向量 vectors = np.random.rand(100, dimension).astype('float32') index.add(vectors) # 查询最近邻 query_vector = np.random.rand(1, dimension).astype('float32') distances, indices = index.search(query_vector, k=5) print(indices) ``` #### 3. 多跳推理机制 对于多跳查询的支持,通常需要设计递归式的查询逻辑或者借助 Transformer 编码器解码器架构进行上下文理解。这部分可以从 RAG (Retrieval-Augmented Generation) 系统的设计思路出发[^2]。 假设我们已经有了预训练的语言模型,则可以在 PyTorch 上搭建基础框架: ```python from transformers import AutoTokenizer, AutoModelForSeq2SeqLM tokenizer = AutoTokenizer.from_pretrained("facebook/rag-token-base") model = AutoModelForSeq2SeqLM.from_pretrained("facebook/rag-token-base") def generate_response(contexts, question): inputs = tokenizer([question], return_tensors="pt") with tokenizer.as_target_tokenizer(): targets = tokenizer([""], return_tensors="pt")["input_ids"] outputs = model.generate( context_input_ids=contexts, **inputs ) response = tokenizer.decode(outputs[0], skip_special_tokens=True) return response contexts = ... # 提供从数据库检索到的相关段落 question = "What is the capital of France?" response = generate_response(contexts, question) print(response) ``` 虽然上述代码片段并未完全针对 LightRAG 进行定制化开发,但它展示了如何结合外部知识源增强生成能力的核心理念。 --- ###
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

大F的智能小课

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值