- 博客(34)
- 收藏
- 关注
原创 Langchain——结合LLM与Langchain工程Python示例
本文介绍了如何结合LangChain框架与大型语言模型(LLM)开发AI应用。LangChain作为开源框架,提供了标准化接口来简化LLM集成,支持提示工程、内存管理、代理和链等核心功能。文章详细讲解了LangChain的架构设计,包括模型I/O、提示模板、内存机制等组件,并提供了Python代码示例展示基础用法。通过LangChain可以克服LLM的局限性,实现更强大的NLP应用开发。最后还介绍了使用Docker、Pip等工具的安装配置方法,帮助开发者快速搭建LangChain开发环境。
2025-08-18 11:12:31
188
原创 原创-- 【毕业设计】基于YOLOv5的自行车检测模型优化与应用
本文提出了一种基于YOLOv5的自行车检测模型优化方法,通过引入CBAM注意力机制增强特征表达能力。研究首先分析了城市交通中自行车检测的挑战,阐述了YOLOv5算法的实时检测优势及其网络架构。在实现环节,详细介绍了数据集构建、模型训练和评估过程,重点展示了如何集成CBAM模块提升小目标检测性能。实验结果表明,该方法能有效提高复杂场景下的自行车识别准确率,为智能交通管理提供了可行的技术方案。项目代码和数据集已开源,便于后续研究和应用扩展。
2025-08-18 11:10:15
252
原创 原创-- 【毕业设计】基于YOLOv5的自行车检测模型优化与应用
本文提出了一种基于YOLOv5的自行车检测模型优化方法,通过引入CBAM注意力机制增强特征表达能力。研究首先分析了城市交通中自行车检测的挑战,阐述了YOLOv5算法的实时检测优势及其网络架构。在实现环节,详细介绍了数据集构建、模型训练和评估过程,重点展示了如何集成CBAM模块提升小目标检测性能。实验结果表明,该方法能有效提高复杂场景下的自行车识别准确率,为智能交通管理提供了可行的技术方案。项目代码和数据集已开源,便于后续研究和应用扩展。
2025-08-18 11:09:19
164
原创 【YOLOv8多模态入门必备】深度解析YOLOv8多模态(可见光+红外图像)推理模块,快速入门多模态检测,含超详细步骤分析!
本文详细介绍了YOLOv8多模态目标检测的推理模块实现方法,重点讲解了可见光+红外图像的双模态检测流程。文章首先强调了需掌握YOLOv8多模态训练的基础知识,随后提供了重构后的核心推理代码hbbDetect.py,包含模型加载、图像处理、边界框绘制和FPS计算等关键功能。代码支持双模态图像输入(RGB+IR),通过特征融合实现目标检测,并输出带标注框的检测结果。作者对代码结构进行了优化解耦,使其更易于理解和修改,同时提供了详细的参数配置说明(如数据集路径、权重文件路径等)。该实现适用于水平框检测任务,并包含
2025-08-18 11:08:16
214
原创 【NLP自然语言处理】探索注意力机制-解锁深度学习的语言理解新篇章
本文介绍了注意力机制的基本概念及其在NLP中的应用。文章首先解释了注意力的计算规则,包括key、query和value的关系,区分了一般注意力机制和自注意力机制。随后详细说明了注意力机制的实现步骤,包括线性变换、softmax归一化和矩阵运算等关键环节,并提供了PyTorch实现的示例代码。注意力机制能够帮助模型更好地理解输入数据中的关键信息,在自然语言处理任务中展现出强大的特征提取能力。通过本文,读者可以掌握注意力机制的核心思想及其实现方法。
2025-08-18 11:06:09
103
原创 使用 ResUNet++、增强对结直肠息肉分割的图像识别综合研究
本研究提出了一种结合ResUNet++、条件随机场(CRF)和测试时增强(TTA)的结直肠息肉分割方法。实验在六个公开数据集(Kvasir-SEG、CVC-ClinicDB等)上验证,结果表明该方法能有效提高分割性能,尤其在检测小尺寸(<10mm)、扁平/无蒂息肉方面表现突出——这些类型在临床检查中漏诊率较高。研究还重点考察了模型在跨数据集场景下的泛化能力,为临床实践提供了重要参考。此外,团队公开了196个难检测息肉样本作为Kvasir-SEG的子集,为后续研究提供资源。该工作通过多方位验证,为计算机辅助诊
2025-08-18 11:04:13
220
原创 使用 ResUNet++、增强对结直肠息肉分割的图像识别综合研究
本研究提出了一种结合ResUNet++、条件随机场(CRF)和测试时增强(TTA)的结直肠息肉分割方法。实验在六个公开数据集(Kvasir-SEG、CVC-ClinicDB等)上验证,结果表明该方法能有效提高分割性能,尤其在检测小尺寸(<10mm)、扁平/无蒂息肉方面表现突出——这些类型在临床检查中漏诊率较高。研究还重点考察了模型在跨数据集场景下的泛化能力,为临床实践提供了重要参考。此外,团队公开了196个难检测息肉样本作为Kvasir-SEG的子集,为后续研究提供资源。该工作通过多方位验证,为计算机辅助诊
2025-08-18 11:03:10
641
原创 深度学习驱动下的目标检测技术-原理、算法与应用创新(三)
本文介绍了基于深度学习的目标检测技术开发环境搭建及YOLOv5算法实现。首先详细讲解了Python和PyTorch等关键工具的安装配置过程,包括环境变量设置、版本选择及依赖库安装。随后重点剖析了YOLOv5的网络结构,通过代码示例展示了卷积模块和C3模块的实现原理,说明了前向传播过程和模型推理优化方法。文章为开展目标检测项目提供了从环境配置到算法实现的全流程指导,适合从事计算机视觉和图像处理的研究者和开发者参考。
2025-08-18 11:02:15
613
原创 大数据毕设分享 opencv python 深度学习垃圾图像分类系统
如今,垃圾分类已成为社会热点话题。其实在2019年4月26日,我国住房和城乡建设部等部门就发布了《关于在全国地级及以上城市全面开展生活垃圾分类工作的通知》,决定自2019年起在全国地级及以上城市全面启动生活垃圾分类工作。到2020年底,46个重点城市基本建成生活垃圾分类处理系
2025-08-18 11:01:04
501
原创 毕业设计项目 深度学习 opencv 公式识别
本文介绍了一个基于深度学习的端到端手写数学公式识别系统。针对传统OCR方法难以处理二维数学公式结构的问题,项目采用Seq2Seq+Attention模型框架,结合CNN编码器和LSTM解码器,并创新性地引入位置信息嵌入技术来解决空间结构特征丢失问题。系统关键实现包括六层卷积神经网络编码、特征图扁平化处理,以及通过正余弦函数计算位置嵌入向量来保留公式结构信息。实验表明该方法有效提升了手写数学公式的识别准确率,为复杂二维模式识别提供了新思路。
2025-08-18 11:00:08
253
原创 毕业设计项目 深度学习 opencv 公式识别
本文介绍了一个基于深度学习的端到端手写数学公式识别系统。针对传统OCR方法难以处理二维数学公式结构的问题,项目采用Seq2Seq+Attention模型框架,结合CNN编码器和LSTM解码器,并创新性地引入位置信息嵌入技术来解决空间结构特征丢失问题。系统关键实现包括六层卷积神经网络编码、特征图扁平化处理,以及通过正余弦函数计算位置嵌入向量来保留公式结构信息。实验表明该方法有效提升了手写数学公式的识别准确率,为复杂二维模式识别提供了新思路。
2025-08-18 10:59:15
387
原创 毕业设计-基于深度学习的坐姿监测算法系统 机器学习 目标检测 人工智能
本文提出了一种基于深度学习的坐姿监测算法系统,采用YOLOv5目标检测算法实现实时坐姿识别。系统针对传统监测方法智能性不足的问题,通过计算机视觉技术自动分析坐姿状态。详细介绍了YOLOv5算法原理及其改进特性,并对比分析了VGG、MobileNet和ResNet等图像分类网络的性能特点。实验部分阐述了自定义数据集的采集过程,包含端坐、趴卧等典型坐姿类别,并说明了数据增强策略。该系统可有效识别不良坐姿,为健康监测提供智能化解决方案,具有较高的应用价值。
2025-08-18 10:58:31
151
原创 深度学习yolo11空域安全无人机检测识别系统(源码+论文)
本文介绍了一个基于YOLOv11的无人机检测系统,针对空域安全管理需求开发。随着无人机技术的快速发展,传统监测技术存在检测距离短、误报率高等问题。该系统采用多尺度特征融合和动态背景建模等创新技术,结合深度学习优化目标检测性能,在边缘计算设备上实现了95%以上的检测准确率。系统包含模型训练、视频处理、用户交互等模块,支持实时监测与智能预警。项目成果具有显著的安全价值和经济优势,为空域安全管理提供了高效低成本的解决方案。论文详细阐述了技术实现方案和系统设计框架,包含完整的源码和训练参数。
2025-08-18 10:57:21
520
原创 毕业设计-基于计算机视觉的动物园野生动物识别
本文提出了一种基于计算机视觉的动物园野生动物识别系统,采用YOLOv5目标检测算法实现高效准确的动物识别。研究首先分析了野生动物监测的现状与需求,阐述了深度学习技术在生态保护中的应用价值。在算法设计上,详细介绍了卷积神经网络的原理与YOLOv5的框架特点,重点讨论了多尺度特征融合和轻量化优势。系统实现部分包括数据采集标注、实验环境搭建和模型训练流程,通过自主拍摄和网络采集构建了丰富的动物数据集,采用数据增强提升模型泛化能力。实验结果表明,该方法能够有效识别多种野生动物,为动物园管理和生态保护提供了智能化解决
2025-08-08 09:39:44
304
原创 毕业设计 python旅游景点数据爬取分析可视化系统 可视化大屏 景点数据 数据挖掘 Django框架+携程旅游
【摘要】本项目是一个基于Python的旅游景点数据爬取与分析系统,采用Django框架开发,结合Selenium爬取携程网旅游数据。系统通过MySQL存储数据,并实现可视化大屏展示,包含热门景点排行、评分分析、词云图等功能。核心功能包括:1)自动化爬取景点数据;2)多维度的数据统计分析;3)交互式可视化展示(柱状图、扇形图等);4)后台管理系统。系统解决了传统旅游信息获取滞后、检索效率低的问题,为旅游决策提供数据支持。技术栈涵盖Python、Django、MySQL、Selenium和HTML,适用于毕业设
2025-08-08 09:37:39
672
原创 毕设项目 深度学习验证码识别系统(源码+论
本文介绍了一个基于深度学习的验证码识别系统毕设项目。系统采用Python开发,主要使用Pillow、OpenCV和pytesseract等图像处理库。识别流程包括7个关键步骤:灰度处理、二值化、去除边框、降噪处理、字符切割/矫正、训练字体库和最终识别。重点讲解了图像预处理技术,如自适应阈值二值化、边框去除以及点线降噪算法,并提供了核心代码实现。该系统针对简单验证码识别效果良好,但作者指出识别率提升需要投入更多精力训练专用字体库。项目完整源码和论文可提供参考,适合计算机视觉和图像处理领域的毕业设计选题。
2025-08-08 09:32:34
388
原创 毕设开源 基于深度学习的车牌识别(源码分享)
本文分享了一个基于深度学习的车牌识别毕业设计项目,详细介绍了车牌识别系统的原理与实现流程。系统主要包括图像采集、预处理、车牌定位、字符分割和字符识别等核心模块,重点分析了车牌定位、字符分割和字符识别三大关键技术。作者采用支持向量机(SVM)算法进行字符识别,详细展示了SVM模型的训练方法、数据处理流程和核心代码实现,并提供了包含字母、数字和省份简称的车牌字符训练数据集。该项目实现了从车牌检测到字符识别的完整流程,具有较高的实用价值,为相关领域研究提供了可参考的技术方案。
2025-08-08 09:31:36
998
原创 YOLOv11实战TT100K中国交通标志识别
本文提出了一种基于YOLOv11算法的中国交通标志检测系统,结合PyQt5构建用户界面。YOLOv11通过引入C3k2块、C2PSA模块等创新设计,在TT100K交通标志数据集上实现了高效准确的检测性能。该系统支持图像、视频和摄像头实时检测,界面友好直观。研究详细阐述了YOLOv11的算法原理,包括主干网络、颈部结构和预测头的改进,并提供了完整的训练流程和环境配置指南。实验结果表明,YOLOv11在检测精度和速度上均优于前代版本,为交通标志识别提供了有效的解决方案。
2025-08-08 09:27:50
1048
原创 python招聘数据分析可视化系统+爬虫(源码+文档)计算机毕业设计
本文介绍了一个基于Python的招聘数据分析可视化系统,结合Flask框架、Echarts可视化工具和requests爬虫技术。系统从智联招聘平台爬取职位数据(包括薪资、地点、学历要求等),通过数据清洗和分析,实现了多维度的可视化展示,如工作经验/学历要求分析、技能词云图、城市薪资分布等。核心功能包括数据采集、清洗(处理薪资单位转换等)、存储及可视化呈现。项目采用Flask构建Web应用,使用pandas等库进行数据处理,为招聘行业提供数据支持。附有源码获取方式和作者联系方式,适合计算机相关专业毕业设计参考
2025-08-08 09:26:53
342
原创 deepseek毕业设计-豆瓣图书数据分析可视化系统 Flask框架 python语言 requests爬虫 MySQL数据库
本文介绍了一个基于Flask框架的豆瓣图书数据分析可视化系统毕业设计项目。系统采用Python语言开发,使用requests库进行数据爬取,MySQL存储数据,并通过Echarts实现数据可视化。主要功能包括:首页数据概览、图书信息列表展示、年份数据分析(柱状图/散点图)、作者出版数量TOP10排名、作者词云图分析等8个核心模块。系统还实现了用户注册登录和后台管理功能,管理员可通过后台进行数据采集和维护。文章中展示了核心爬虫代码片段,演示了如何从豆瓣获取图书信息(书名、评分、作者、出版社等)并存储为CSV文
2025-08-08 09:25:53
844
原创 深度学习环境配置-手把手实战配置深度学习环境(Ubuntu20.04版)
本文详细介绍了在Ubuntu系统下配置深度学习环境的完整流程。主要内容包括:1)通过ubuntu-drivers命令正确安装NVIDIA显卡驱动(推荐使用系统推荐版本);2)安装Anaconda并配置Python环境路径;3)创建conda虚拟环境管理不同项目;4)配置清华镜像加速下载。文章还推荐了Ventoy多系统安装工具和纯净系统镜像下载网站,并提供了显卡驱动冲突、环境配置等常见问题的解决方案。整个配置过程基于NVIDIA 1050Ti显卡、Ubuntu 20.04系统,最终搭建CUDA 10.1+cu
2025-08-08 09:24:19
825
原创 基于yolo11和yolov8的钢铁缺陷检测系统
本文介绍了一个基于YOLOv8和YOLO11的钢铁表面缺陷检测系统,该系统能够高效识别钢铁表面的各类缺陷。文章详细说明了系统的实现流程,包括数据集配置、模型训练(支持本地和云服务器训练)、指标测试以及图形化界面封装(使用PySide6和Gradio开发)。系统针对钢铁工业质检需求,通过深度学习技术提升检测效率和精度,为传统人工检测提供了智能化替代方案。文中还包含环境配置指南、训练调试建议和Web界面开发示例代码,为使用者提供了完整的技术实现方案。
2025-08-08 09:22:49
1111
原创 毕设选题-小红书数据分析与可视化
本文以小红书服饰行业为研究对象,通过数据分析和可视化方法探究其发展趋势。研究使用Python的Numpy、Pandas和Pyecharts等工具,对服饰行业笔记数据进行处理与分析。首先对日期数据进行类型转换,并计算每篇笔记的平均互动指标。通过相关系数热力图发现,平均互动量与点赞数、收藏数相关性最强,而笔记篇数与其他指标无明显关联。此外,研究还对各行业数据进行排序展示,生成条形图直观呈现Top10行业数据。该分析为小红书服饰行业的营销策略制定提供了数据支撑。
2025-08-08 09:21:20
694
原创 深度学习 python opencv 实现人脸年龄性别识别
本文介绍了一个基于深度学习的毕设项目,使用Python和OpenCV实现人脸年龄性别识别。项目采用卷积神经网络(CNN)作为核心技术,通过TensorFlow和Keras框架构建模型。文章详细阐述了CNN的关键组件:卷积层进行特征提取、池化层降维、激活函数引入非线性、全连接层完成分类。提供了Keras实现CNN的具体代码示例,并介绍了Keras框架的序列模型和通用模型两种构建方式。项目将数据集按性别(男女两类)和年龄(7个年龄段)分类处理,给出了训练代码模板,包括数据预处理、生成器设置等关键步骤。该识别系统
2025-08-08 09:20:09
829
原创 【深度学习环境配置】手把手实战配置深度学习环境(win10版)
本文详细介绍了在Windows 10系统下配置深度学习环境的完整流程,适用于NVIDIA显卡用户。主要内容包括:1)下载安装CUDA 10.1驱动;2)配置cuDNN 7.5.1加速库;3)安装Anaconda并创建Python 3.6虚拟环境;4)安装PyTorch 1.4.1框架。作者通过亲测有效的步骤指导,解决了环境配置中的常见问题,如路径设置、版本匹配等,并提供了详细的图文说明。该教程特别适合深度学习初学者,帮助用户快速搭建本地开发环境,为后续模型训练打下基础。
2025-08-08 08:48:15
687
原创 基于YOLO实现的口罩佩戴检测 - python opemcv 深度学习
本文提出基于YOLOv5的口罩佩戴检测系统,用于解决人工检查效率低下的问题。YOLOv5作为单阶段目标检测算法,在输入端采用Mosaic数据增强和自适应锚框计算,基准网络融合Focus与CSP结构,Neck网络添加FPN+PAN结构,Head输出层改进损失函数和预测框筛选机制。关键代码展示了Detect类和Model类的实现,通过深度学习技术实现高效准确的口罩佩戴检测,为疫情防控提供智能化解决方案。
2025-08-08 08:42:20
1000
原创 基于CNN实现谣言检测 - python 深度学习 机器学习
【摘要】本项目基于CNN实现社交媒体谣言检测,使用Python深度学习技术处理新浪微博的中文谣言数据集(1538条谣言/1849条非谣言)。实现过程包括:1)解析JSON格式原始数据并生成标注文本;2)构建字符级数据字典实现文本向量化;3)划分训练集/验证集(1:7比例);4)设计数据读取器支持批量训练。通过字符级CNN模型对微博文本进行二分类(谣言/非谣言),该项目为应对社交媒体虚假信息传播提供了可行的技术方案,核心代码展示了数据预处理、字典构建和数据集划分的关键实现步骤。
2025-08-08 08:40:33
862
原创 基于PyTorch深度学习框架构建RNN经典案例-构建人名分类器
本文介绍了基于PyTorch框架构建RNN、LSTM和GRU模型的人名分类器案例。首先对数据集进行预处理,包括字符规范化、数据读取和one-hot编码转换。然后构建了三种循环神经网络模型(RNN、LSTM、GRU),详细说明了模型训练过程,包括损失函数计算、参数更新和训练日志记录。实验对比了三种模型在训练损失和耗时方面的表现,并提供了评估预测函数。该案例完整展示了从数据处理到模型构建、训练评估的NLP分类任务流程,可作为学习RNN系列模型的实践参考。
2025-08-07 14:03:05
403
原创 U-Net原理与网络构建
U-Net是一种经典的图像分割网络,采用对称的U形结构,包含编码器(下采样)和解码器(上采样)路径。通过跳跃连接融合不同层次特征,实现精确分割。核心组件包括双卷积块、最大池化下采样和转置卷积上采样。PyTorch实现中,使用DoubleConv处理特征提取,Down模块进行下采样,Up模块实现上采样与特征融合。输出层通过1x1卷积生成分割结果,二分类使用sigmoid激活。该网络在医学影像等领域应用广泛,后续改进版本进一步提升了性能。
2025-08-04 09:07:08
362
原创 衣物皮革类 布匹织物瑕疵数据集 2115张,6种瑕疵类型 json格式与yolo格式标签 目标检测 深度学习
YOLOv8训练织物瑕疵检测模型指南 本文详细介绍了如何使用YOLOv8训练一个织物瑕疵检测模型。数据集包含2115张图片,6种瑕疵类型,提供JSON和YOLO格式标签。主要内容包括:环境配置(安装Ultralytics、PyTorch等库)、数据准备(划分训练/验证集、JSON转YOLO格式转换)、EDA分析(类别分布可视化)以及创建YAML配置文件。文章还提供了自动处理脚本,帮助快速完成数据预处理。通过本教程,读者可以完整掌握从数据准备到模型训练的整个流程,实现织物瑕疵的自动检测。
2025-07-02 14:26:06
301
原创 电塔电线电线杆缺陷检测数据集 10000张 带标注 voc yolo 电线杆子缺陷数据集输电线塔缺陷数据集
YOLOv8训练电力设施缺陷检测数据集指南 本文介绍了使用YOLOv8训练电力设施(电塔、电线、电线杆)缺陷检测数据集的方法。该数据集包含9838张图片,44520个标注框,涵盖5类缺陷(绑扎不规范、并线线夹保护壳缺失、耐张线夹保护壳缺失、横杆腐蚀、塔头损坏)。数据集提供VOC(XML)和YOLO(TXT)两种标注格式。文章详细说明了环境配置、数据集准备、VOC转YOLO格式转换脚本,以及数据加载器的实现方法。项目结构清晰,包含训练、预测脚本和模型权重保存位置,为电力设施缺陷检测任务提供了完整的解决方案。
2025-07-02 11:49:18
1030
原创 遥感卫星地面目标识别检测数据集 1500张 yolo数据集 遥感地面目标检测数据集 20类
本文介绍了使用YOLOv8模型训练卫星图片地面目标检测数据集的完整流程。主要内容包括:1)数据集准备,提供标准目录结构和20种类别标注;2)创建YAML配置文件定义数据集路径和类别信息;3)数据集划分脚本示例;4)YOLOv8训练脚本详解,涵盖模型加载、超参数设置和训练过程。文中还展示了如何设置输入尺寸、批次大小等关键参数,并支持GPU加速训练。该教程适用于高速公路服务区、机场、船舶等20种地面目标的卫星图像识别任务开发。(字数:149)
2025-07-02 11:43:18
380
原创 目标检测使用yolov8训练番茄西红柿成熟度检测数据集 6类实现一个基于 YOLOv8 的西红柿成熟度检测系统 6类 yolo格式
本文介绍了一个基于YOLOv8的番茄成熟度检测系统实现方案。该系统使用包含800张专业拍摄的番茄图像数据集(分为大番茄和小番茄两类,各包含红、黄、绿三种成熟度),采用YOLO格式的6类标注(big_tomato_red/yellow/green和small_tomato_red/yellow/green)。实现步骤包括:1)数据准备,构建包含图像和标注文件的YOLO格式数据集;2)环境部署,安装PyTorch、OpenCV等必要依赖;3)模型训练,使用YOLOv8进行目标检测训练;4)模型评估;5)开发Py
2025-07-02 11:42:04
849
原创 目标检测框架中yolov8训练使用输电塔杆绝缘子红外测温数据集 构建基于深度学习的输电塔杆绝缘子红外测温检测系统 进行识别输电线塔杆红外绝缘子数据集
本文介绍基于YOLOv8框架构建输电塔杆绝缘子红外测温检测系统。使用800张VOC格式标注的红外图像数据集,通过数据预处理将标注转换为YOLO格式,并配置YAML文件定义数据集路径和类别。环境搭建采用Ultralytics等库,包含数据划分脚本(训练集70%、验证集15%、测试集15%)。该方法可实现高效识别输电线路绝缘子缺陷,为电力设备智能巡检提供技术支持。
2025-07-02 11:30:45
343
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人