基于量子深度学习的芒果多级分级系统
1. 研究背景与目的
传统的芒果质量评估和分级依靠农场专家和仓库人员手动或半手动完成,这种方式主观性强、缺乏一致性,且耗费大量人力成本。当前在基于外部和内部属性的芒果多级分级、适用于现场分级的经济实惠便携式设备,以及分级算法准确性方面存在不足。因此,本研究旨在开发一种智能芒果分级系统,利用低成本便携式设备技术,基于外部和内部属性自动对芒果整体质量进行分级。
2. 研究方法与流程
2.1 研究目标
- 微观分级 :通过显微镜图像,依据芒果果皮表面的角质层和网状图案确定成熟阶段,从而对芒果进行分级。
- 外部分级 :基于芒果的外部属性,如成熟阶段、颜色、形状、纹理等进行分级。
- 内部分级 :根据芒果的内部属性,主要是总可溶性固形物(TSS)含量来分级。
- 综合多级分级 :结合芒果的外观和内部风味,构建智能自动整体质量分级解决方案。
2.2 数据采集与预处理
- 数据采集
- “成熟阶段”数据集 :使用邦加帕利和基利穆库两个品种的芒果表面角质层纹理显微镜图像,在四个不同成熟阶段(生、早熟、部分成熟、成熟)采集。
- “成熟阶段”数据集 :使用手机相机拍摄的完整芒果图像,包