18、异常检测技术与实践

异常检测技术与实践

1. 异常检测方法概述

在数据处理和分析中,异常检测是一项至关重要的任务,它能够帮助我们发现数据中不符合常规模式的异常点。以下介绍几种常见的异常检测方法。

1.1 自编码器(Autoencoders)

自编码器是一种用于无监督学习的神经网络架构,由编码器和解码器两部分组成。编码器将输入数据压缩成潜在空间表示,解码器再从该表示中重建输入数据。

  • 工作原理 :自编码器在正常数据上进行训练,学习如何准确重建正常数据。通过观察哪些数据点的重建误差最大来检测异常,因为自编码器难以准确重建与训练数据不同的数据点。
  • 优点
    • 无需特征工程即可检测高维数据集中的异常。
    • 能够学习数据中的复杂模式,有效检测细微异常。
    • 训练和部署相对高效。
  • 缺点
    • 对超参数(如网络架构和训练参数)敏感。
    • 需要大量训练数据才能达到良好性能。
  • 示例 :对于制造工厂的传感器数据集,可使用自编码器学习传感器数据的正常模式,通过观察重建误差检测异常。

1.2 鲁棒协方差(Elliptic Envelope)

鲁棒协方差,也称为椭圆包络方法,是一种统计异常检测方法。它试图将数据拟合到多元高斯分布

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值