异常检测技术与实践
1. 异常检测方法概述
在数据处理和分析中,异常检测是一项至关重要的任务,它能够帮助我们发现数据中不符合常规模式的异常点。以下介绍几种常见的异常检测方法。
1.1 自编码器(Autoencoders)
自编码器是一种用于无监督学习的神经网络架构,由编码器和解码器两部分组成。编码器将输入数据压缩成潜在空间表示,解码器再从该表示中重建输入数据。
- 工作原理 :自编码器在正常数据上进行训练,学习如何准确重建正常数据。通过观察哪些数据点的重建误差最大来检测异常,因为自编码器难以准确重建与训练数据不同的数据点。
- 优点 :
- 无需特征工程即可检测高维数据集中的异常。
- 能够学习数据中的复杂模式,有效检测细微异常。
- 训练和部署相对高效。
- 缺点 :
- 对超参数(如网络架构和训练参数)敏感。
- 需要大量训练数据才能达到良好性能。
- 示例 :对于制造工厂的传感器数据集,可使用自编码器学习传感器数据的正常模式,通过观察重建误差检测异常。
1.2 鲁棒协方差(Elliptic Envelope)
鲁棒协方差,也称为椭圆包络方法,是一种统计异常检测方法。它试图将数据拟合到多元高斯分布