自然语言处理与Azure认知服务:解锁AI的无限可能
1. 自然语言处理概述
自然语言处理(NLP)是深度学习的一个领域,涵盖文本分类、问答、文本翻译等需要计算机处理文本数据的任务。每个NLP模型的关键元素是嵌入层,它用浮点数数组表示单词,以模拟单词之间的关系。例如,在嵌入空间中,“excellent”和“amazing”的向量彼此接近,而“butterfly”和“basketball”的向量则相距甚远,因为这两个词没有语义关系。词嵌入是在模型训练过程中学习得到的。
输入到嵌入层的文本必须首先进行分词,并转换为等长的序列。Keras的Tokenizer类可以完成大部分工作。你也可以在模型中包含一个TextVectorization层,以自动进行分词和填充。
文本分类的一种方法是使用传统的密集层对嵌入层输出的向量进行分类。另一种方法是使用卷积层或循环层从嵌入向量中提取有关单词位置的信息,并对这些层的输出进行分类。
使用深度学习将文本翻译成其他语言被称为神经机器翻译(NMT)。直到最近,最先进的NMT还是使用基于LSTM的编码器 - 解码器模型。如今,这些模型已在很大程度上被Transformer模型所取代,Transformer模型使用神经注意力机制来关注短语中最有意义的单词,并对单词上下文进行建模。Transformer能够理解“train”在“meet me at the train station”和“it’s time to train a model”中的不同含义,并在计算中考虑单词顺序。
BERT是一种复杂的Transformer模型,谷歌的工程师用数十亿个单词对其进行训练,使其具备语言理解能力。它可以针对特定任务进行微调,如问答