一、基本算法
ξ˙i=ui,i=1,…,n\dot{\xi}_{i}=u_{i}, \quad i=1, \ldots, nξ˙i=ui,i=1,…,nui=−∑j=1naij(t)(ξi−ξj),i=1,…,nu_{i}=-\sum_{j=1}^{n} a_{i j}(t)\left(\xi_{i}-\xi_{j}\right), \quad i=1, \ldots, nui=−j=1∑naij(t)(ξi−ξj),i=1,…,nξ˙=−[Ln(t)⊗Im]ξ\dot{\xi}=-\left[\mathcal{L}_{n}(t) \otimes I_{m}\right] \xiξ˙=−[Ln(t)⊗Im]ξ
二、位置一致性控制
三、速度一致性控制