在深度学习的诸多突破中,**生成对抗网络(Generative Adversarial Networks, GANs)**无疑是最具创新性和影响力的模型之一。由 Ian Goodfellow 等人于 2014 年提出,GANs 以其独特的“对抗”训练机制,在图像生成、风格迁移、超分辨率等领域展现出令人惊叹的能力,生成了许多逼真到足以乱真的图像和艺术作品,模糊了真实与虚拟的界限。
GANs 的核心思想源于博弈论中的零和游戏:一个生成器(Generator)试图创建尽可能逼真的数据,而一个判别器(Discriminator)则努力区分真实数据和生成数据。通过这种相互竞争、共同进步的方式,两个网络不断提升自身能力,最终达到一个平衡点,即生成器能够产生判别器无法辨别的假数据。
本文将深入浅出地解释生成对抗网络的基本原理,剖析其架构和训练过程,并通过丰富的图像生成应用案例,展示 GANs 在计算机视觉领域所带来的革命性变革。
1. GANs 的核心思想:一场生成器与判别器的博弈
想象一下,你是一个伪造者(生成器 G),你的目标是制作出足以骗过警察(判别器 D)的假钞。而警察的目标是练就火眼金睛,能够准确分辨真钞和假钞。
- 生成器 (Generator, G):
- 职责:接收一个随机噪声向量(通常称为隐变量或 Latent Vecto