变分自编码器(VAEs)详解:模型结构与实现细节

在深度学习的生成模型家族中,变分自编码器(Variational Autoencoders, VAEs) 与生成对抗网络(GANs)齐名,是另外一个重要的分支。尽管在图像生成质量上,VAEs 在某些方面可能不如最先进的 GANs 那般逼真,但它提供了一个坚实的概率框架,使得模型不仅能生成数据,还能学习到数据背后有意义的、连续的潜在空间(Latent Space)。这使得 VAEs 在数据压缩、去噪、异常检测、半监督学习以及可控生成等方面具有独特的优势。
在这里插入图片描述

VAEs 的魅力在于它巧妙地将自编码器(Autoencoder)的概念与变分推断(Variational Inference)相结合,允许我们对数据生成过程进行概率建模。本文将深入剖析变分自编码器的模型结构,解释其核心组成部分的工作原理,并探讨其实现细节,帮助读者全面理解这一强大且富有洞察力的生成模型。


1. 从自编码器到变分自编码器

在理解 VAEs 之前,我们先回顾一下自编码器 (Autoencoder)

1.1 自编码器 (Autoencoder)

自编码器是一种无监督学习模型,其目标是学习一个输入数据的

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

you的日常

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值