在自然语言处理(NLP)领域,序列到序列(Sequence-to-Sequence, Seq2Seq)模型 无疑是处理各种生成任务的强大框架,例如机器翻译、文本摘要、对话系统和语音识别等。它通过一个编码器(Encoder) 将输入序列压缩成一个固定长度的上下文向量,再由一个 解码器(Decoder) 将这个向量展开成目标序列。
然而,这种经典 Seq2Seq 架构存在一个明显的瓶颈:当输入序列很长时,编码器很难将所有信息都压缩到一个固定长度的向量中,导致信息丢失,从而影响解码器的性能。
为了解决这一“信息瓶颈”问题,注意力机制(Attention Mechanism) 应运而生。注意力机制允许解码器在生成输出序列的每个词时,能够动态地“关注”输入序列中不同部分的信息,而不是仅仅依赖于一个单一的上下文向量。这极大地提升了 Seq2Seq 模型处理长序列和复杂任务的能力,成为了现代神经机器翻译和各种序列生成任务的标准配置。
本文将深入探讨基于注意力机制的 Seq2Seq 模型,解析其核心工作原理,并通过概念性代码展示其关键组成部分,分析其在优化策略上的应用,旨在为读者呈现注意力机制如何革新 Seq2Seq 模型,并开启了序列生成任务的新篇章。