PV-RCNN、PV-RCNN++ 网络结构

paper:

github:使用OpenPCDet进行训练测试 https://github.com/open-mmlab/OpenPCDet

PV-RCNN

简介

PV-RCNN的提出是想要综合 point-based 和 voxel-based 3D目标检测方法的优势:既要尽可能保留原始点的精确位置信息,又要降低运算消耗。

PV-RCNN主要贡献:

  1. Voxel & Point based Method 点和体素方法的结合:实现了更高的识别性能和可控的内存消耗。
  • Voxel-based 体现在3D稀疏CNN场景编码的过程中,将场景转换为多种尺度的特征空间,并且生成了高品质的预选框。
  • Point-based 体现在 Voxel-to-Keypoint 和 Keypoint-to-RoI grid 这两个步骤当中,它们本质上都是把邻域
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

JoannaJuanCV

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值