paper:
- PV-RCNN https://arxiv.org/abs/1912.13192
- PV-RCNN++ https://arxiv.org/abs/2102.00463
github:使用OpenPCDet进行训练测试 https://github.com/open-mmlab/OpenPCDet
PV-RCNN
简介
PV-RCNN的提出是想要综合 point-based 和 voxel-based 3D目标检测方法的优势:既要尽可能保留原始点的精确位置信息,又要降低运算消耗。
PV-RCNN主要贡献:
- Voxel & Point based Method 点和体素方法的结合:实现了更高的识别性能和可控的内存消耗。
- Voxel-based 体现在3D稀疏CNN场景编码的过程中,将场景转换为多种尺度的特征空间,并且生成了高品质的预选框。
- Point-based 体现在 Voxel-to-Keypoint 和 Keypoint-to-RoI grid 这两个步骤当中,它们本质上都是把邻域