
大白话说Java
文章平均质量分 79
用通俗易懂的话,带你了解Java最基础,也是最前沿的技术!
Java自学之旅
未知的领域想入非非,你需要一位带路人,带你走出迷途,让你成为你想成为的一方之人!
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
【Java-分布式】什么是服务雪崩?
服务雪崩是分布式系统中因局部故障引发系统级瘫痪的现象。当某个服务(如库存服务)出现性能下降,会导致调用方(如订单服务)资源耗尽,进而引发连锁反应,使整个系统崩溃。根本原因在于服务依赖、资源耗尽、缺乏熔断机制和重试风暴。解决方案包括:熔断器(快速失败)、服务降级(提供备选方案)、限流(控制请求流量)和服务隔离(阻断故障传播)。这些措施共同作用,将故障控制在最小范围,保障系统可用性。原创 2025-08-15 08:29:11 · 333 阅读 · 0 评论 -
【Java-分布式】什么是服务熔断?
服务熔断降级机制解析 熔断降级是保障分布式系统稳定性的关键策略: 熔断像电路保险丝,当服务故障超阈值时自动切断调用,避免级联故障(如Hystrix/Sentinel实现); 降级通过返回缓存数据或简化流程(如关闭积分服务)确保核心功能可用; 典型场景如电商系统中支付服务熔断异常积分服务,防止系统雪崩。核心思想是"快速失败+保大放小",通过工具链实现服务自动熔断、降级恢复和实时监控,保障高并发下的系统韧性。原创 2025-08-15 08:26:48 · 214 阅读 · 0 评论 -
【Java-分布式】什么是服务降级?服务降级的方案有哪些?
服务降级:保障核心业务的高可用策略 服务降级是当系统面临过大压力或资源不足时,通过主动关闭非核心功能来确保核心业务可用的技术方案。主要策略包括:1)功能开关降级,如微博关闭热搜更新保证发帖功能;2)流量熔断,异常时切换简化服务;3)数据降级,优先读缓存或异步写;4)体验降级,简化交互界面;5)依赖隔离,保护核心服务线程;6)人工预案,预设降级规则;7)服务替代,主服务故障时启用备用方案。实施时应遵循"保核心、早触发、明提示"原则,避免系统崩溃。通过合理降级,能在流量高峰时维持基本服务,提原创 2025-08-15 08:24:38 · 461 阅读 · 0 评论 -
【Java-分布式】什么是服务治理?
服务治理是微服务架构中的核心管理机制,用于解决服务拆分后的协同管理问题。其主要功能包括:服务注册发现(如Nacos)、负载均衡(流量分配)、熔断限流(如Sentinel防止雪崩)、配置中心(统一管理)和监控追踪(如SkyWalking)。通过标准化管理,服务治理能提升系统稳定性、可维护性和开发效率,确保微服务像精密齿轮般协同工作。典型应用场景如电商系统,需要协调订单、库存、支付等服务的高效运作。原创 2025-08-15 08:23:03 · 377 阅读 · 0 评论 -
【Java-分布式】微服务架构有什么缺点?
微服务架构虽然提高了系统灵活性,但也带来显著挑战。主要缺点包括:1)系统复杂性指数级增长,跨服务功能开发需要分布式事务协调;2)数据一致性难题,如转账场景可能因网络故障导致数据不一致;3)运维负担加重,需独立部署监控每个服务;4)网络通信风险增加服务延迟和故障点;5)跨服务查询困难,需冗余数据或复杂同步机制。解决方案包括Saga模式、服务网格、熔断机制等,但微服务更适合大型团队和高并发场景,中小项目需谨慎采用。原创 2025-08-14 08:41:07 · 621 阅读 · 0 评论 -
【Java-分布式】微服务架构有什么优势?
微服务架构通过超市分区的类比生动诠释了其核心优势:各服务区独立运营(独立部署升级)、灵活选用工具(技术异构)、故障隔离不影响整体(容错性)、按需扩展高负载区域(弹性伸缩)、团队自主决策(敏捷开发)。这种架构实现了服务解耦、技术自由、故障隔离、弹性扩展和快速迭代,每个微服务拥有专属数据库,避免系统级雪崩,显著提升系统灵活性和可维护性。(135字)原创 2025-08-14 08:31:27 · 215 阅读 · 0 评论 -
【Java-分布式】分布式事务的解决方案有哪些?
本文详解了分布式事务的6种解决方案:1)2PC(两阶段提交)通过协调者统一决策,保证强一致但存在单点故障;2)TCC(Try-Confirm-Cancel)分阶段预留资源,适合高并发场景;3)本地消息表通过异步确保最终一致;4)Saga模式适用于长流程业务,通过补偿机制回滚;5)MQ事务消息实现解耦处理;6)最大努力通知通过重试保证弱一致。文章通过银行转账、电商下单等实例说明各方案原理,并对比了适用场景、一致性和复杂度,建议根据业务需求选择合适方案。强一致选2PC,高并发选TCC或MQ,简单场景用本地消息表原创 2025-08-14 08:29:47 · 868 阅读 · 0 评论 -
【Java-分布式】什么是微服务?
摘要: 微服务是一种架构风格,将大型应用拆分为独立运行的小服务(如订单、支付服务),通过API协作。核心思想是服务自治、技术异构和容错设计,如电商系统中各服务可单独开发部署。优点包括快速迭代、故障隔离和技术自由,但面临运维复杂、网络延迟等挑战。适用于高并发系统,需配套服务发现、API网关等基础设施支撑。本质是以分布式复杂度换取系统灵活性和可维护性。原创 2025-08-14 08:27:41 · 320 阅读 · 0 评论 -
【Java-分布式】什么是分布式事务?
分布式事务是跨多个服务或数据库的事务操作,需保证所有操作全部成功或全部回滚,确保数据一致性。常见场景如电商系统中订单、库存和支付服务的协同。核心挑战在于处理跨服务故障,如网络中断导致部分操作失败。解决方案包括:1)两阶段提交(2PC),简单但存在单点故障风险;2)TCC模式,通过预留资源实现高并发处理;3)消息队列,实现最终一致性但存在延迟。各种方案各具特点,需根据业务场景选择,本质是通过协调或补偿机制解决分布式一致性问题。原创 2025-08-14 08:22:31 · 307 阅读 · 0 评论 -
【Java-分布式】分布式唯一 ID 怎么实现?
本文详解分布式唯一ID生成方案,对比分析4种主流实现: 核心方案 UUID:简单但无序,影响索引性能 数据库号段:分段预取降低DB压力,保证趋势递增 Snowflake:64位时间戳+机器ID+序列号,高性能但需处理时钟回拨 Redis:原子自增实现简单,需保障持久化 关键对比 有序性:数据库/Snowflake/Redis均支持 性能:Snowflake>Redis>UUID>数据库 可用性:UUID无依赖,数据库/Redis需保障服务 选型建议 中小系统:Redis或数据库号段 大型系统:Snowfla原创 2025-08-13 10:17:39 · 306 阅读 · 0 评论 -
【Java-分布式】分布式系统下会遇到哪些问题?
摘要: 分布式系统面临网络延迟/分区、数据一致性、节点故障、事务管理、时钟同步和资源竞争等核心挑战。典型问题包括因网络延迟导致支付状态不同步、脑裂引发双主冲突、跨服务事务原子性难保证等。解决方案依赖重试机制、Paxos算法、分布式锁等技术,本质是通过冗余和异步设计在不可靠环境中构建可靠服务。关键权衡在于性能与一致性,需结合业务场景选择合适策略(如最终一致性或TCC事务模式)。原创 2025-08-12 08:32:29 · 360 阅读 · 0 评论 -
【Java-分布式】RMI 和 RPC 有什么区别?
摘要: RPC(远程过程调用)是一种跨语言通信协议,支持不同语言服务调用(如Python调用Go),典型框架如gRPC;RMI(远程方法调用)是Java专属机制,仅支持Java对象间通信,依赖序列化传递对象。核心区别在于RPC通用性强(跨语言/函数级通信),而RMI深度集成Java生态(对象级调用)。应用场景上,RPC适合多语言微服务,RMI适用于纯Java系统(如EJB)。简言之,RPC是“通用翻译官”,RMI是“Java专属快递员”。原创 2025-08-11 08:39:19 · 350 阅读 · 0 评论 -
【Java-分布式】什么是 SOA?
摘要: SOA(面向服务架构)将应用拆分为独立可复用的服务,通过标准化接口通信。核心特性包括松耦合、可重用性和标准化,在Java中可通过Spring Cloud、JAX-RS等技术实现。典型应用如电商系统的用户、订单、支付服务分离,通过HTTP交互。相比微服务,SOA服务粒度更粗,常采用ESB集成异构系统,适用于企业级应用整合。Java生态提供Spring Boot、Apache CXF等工具支持SOA开发,实现系统灵活性和可维护性。原创 2025-08-11 08:33:03 · 935 阅读 · 0 评论 -
【Java-分布式】SOA 和微服务架构有什么区别?
SOA与微服务架构对比解析 本文通过城市交通系统演变的故事,形象对比了SOA与微服务架构的核心差异。SOA如同中央调度的公交系统,依赖ESB总线、服务粒度粗、变更成本高;而微服务则像现代打车平台,采用API网关、细粒度服务、独立部署。关键区别体现在通信方式、数据管理、部署单元等6个维度。典型案例如升级支付系统时,SOA需全系统停机而微服务只需重启单个容器。总结建议:传统系统整合选SOA,互联网应用和快速迭代场景更适合微服务。文末配有对比思维导图,直观呈现两种架构的核心特征。原创 2025-08-11 08:30:45 · 524 阅读 · 0 评论 -
【Java-ZooKeeper】ZAB 和 Paxos 算法的联系与区别?
本文对比分析了ZAB协议与Paxos算法的异同。两者核心区别在于:Paxos是通用分布式共识算法,采用多轮投票机制;ZAB则是ZooKeeper专用协议,依赖Leader顺序广播。关键联系在于都基于过半提交原则,解决类似问题。通过三将军攻城的类比故事,形象说明Paxos类似民主议会(人人可提案),ZAB则像君主立宪(仅Leader提案)。总结表格显示,Paxos理论严谨但实现复杂,ZAB则针对协调服务优化,牺牲通用性换取更高性能。ZAB可视为Paxos在特定场景的优化实现。原创 2025-08-10 16:20:37 · 1011 阅读 · 0 评论 -
【Java-ZooKeeper】Zookeeper 中的文件系统怎么理解?
Zookeeper的"文件系统"实质是内存中的树形数据结构(ZNode树),用于分布式协调而非数据存储。它通过持久/临时/顺序节点(≤1MB)和Watcher机制实现实时状态同步,如服务发现、配置管理等。与传统文件系统不同,Zookeeper侧重高并发状态协调而非大容量存储,典型应用包括库存同步、分布式锁等场景。其设计核心是通过轻量级节点和事件通知实现分布式系统的高效协同。原创 2025-08-10 16:18:38 · 368 阅读 · 0 评论 -
【Java-ZooKeeper】ZooKeeper 是如何实现分布式事务的?
摘要: ZooKeeper通过ZAB协议实现分布式事务协调,核心机制包括Leader选举和两阶段事务广播(提案+提交),确保原子性和顺序一致性。其特性包括全局有序的ZXID、过半确认机制、持久化日志及Watch监听。典型应用如分布式锁(EPHEMERAL节点防死锁)。相较传统2PC,ZAB协议性能更高(半数确认即可)、支持自动故障恢复。需注意ZooKeeper仅作协调层,业务数据需结合其他数据库存储。适用场景包括分布式锁、配置同步和选主等,通过状态协调而非直接处理业务数据来保障分布式一致性。 (150字)原创 2025-08-10 16:15:42 · 1069 阅读 · 0 评论 -
【Java-ZooKeeper】Zookeeper 集群最少要几台机器,为什么?
Zookeeper集群最少需要3台机器,这是由ZAB协议的一致性要求决定的。3节点集群能在保证高可用的同时避免脑裂:多数节点为2,允许1台故障;而2节点集群多数节点也为2,任何故障都会导致服务停止。单节点则无容错能力。3节点方案完美平衡了可用性与一致性,是Zookeeper集群的最小可靠配置。 (99字)原创 2025-08-10 16:06:20 · 386 阅读 · 0 评论 -
【Java-ZooKeeper】ZooKeeper 有几种部署模式?
ZooKeeper 部署模式核心解析(150字版) ZooKeeper提供三种部署方案:单机模式适合开发测试,但存在单点故障风险;集群投票模式(3/5/7等奇数节点)通过多数表决机制保障高可用,是生产环境标配;观察者模式作为非投票节点,可无限扩展读能力而不影响写性能。关键差异在于:单机无容错,集群通过Quorum机制(N/2+1存活)实现故障容忍,观察者则专门优化全球读扩展。生产部署必须遵循奇数节点原则,3节点集群可承受1节点故障,5节点可承受2节点故障。原创 2025-08-08 17:25:53 · 716 阅读 · 0 评论 -
【Java-ZooKeeper】ZooKeeper 有哪些应用场景?
ZooKeeper是一个分布式协调服务,通过树形节点和监听机制解决分布式系统的协调问题。主要应用场景包括:1)分布式锁,通过临时有序节点实现资源互斥;2)配置中心,持久化节点配合Watcher实现配置动态更新;3)服务注册发现,利用临时节点自动维护服务列表;4)Leader选举,基于最小序号策略选出主节点;5)分布式队列,通过有序节点实现任务调度。其核心在于提供分布式环境下的状态同步和事件通知能力,是分布式系统的关键协调组件。原创 2025-08-07 09:34:59 · 746 阅读 · 0 评论 -
【Java-ZooKeeper】ZooKeeper 是什么?
ZooKeeper是Apache开源的分布式协调服务,相当于分布式系统的"管理员",主要用于解决数据一致性、配置管理和服务发现等问题。其核心功能包括:树形数据存储(ZNode)、监听机制(Watch)、一致性保障(ZAB协议)和分布式锁。典型应用场景包括配置中心、服务发现、分布式锁和Leader选举。ZooKeeper具有高可用(少数节点故障不影响服务)、顺序一致性和高性能(10w+ QPS读操作)等技术特点,是分布式系统的中枢神经系统,通过简单存储结构和监听机制实现服务协调、状态同步和原创 2025-08-07 09:33:17 · 391 阅读 · 0 评论 -
【Java-Redis】什么是缓存无底洞现象,如何解决?
缓存无底洞(Cache Avalanche)指高并发下大量缓存同时失效,请求直接压垮数据库的现象。典型案例是电商秒杀活动时所有商品缓存同时过期,导致数据库超载崩溃。解决方案包括:1)随机化缓存过期时间分散请求;2)永不过期策略+异步更新;3)熔断降级保护数据库;4)布隆过滤器拦截无效请求。最佳实践是预防为主(避免集中失效)、防御为辅(熔断保护)、监控预警和容量规划,核心原则是确保不超过50%请求穿透到数据库。不同方案各有适用场景,需根据业务特点组合使用。原创 2025-08-06 08:30:22 · 367 阅读 · 0 评论 -
【Java-Redis】Redis 有哪些危险命令?如何防范?
Redis存在多个高危命令,如FLUSHALL(清空数据)、KEYS*(阻塞服务)、CONFIG SET(修改配置)等,可能导致数据丢失或服务中断。防范措施包括:1)在配置文件中禁用或重命名危险命令;2)使用ACL限制用户权限,Java应用连接时采用低权限账户;3)用SCAN替代KEYS进行安全遍历;4)实施网络隔离和定期备份。建议构建代码约束、配置加固和架构防护的三级防御体系,遵循最小权限原则,确保Redis服务安全稳定。(149字)原创 2025-08-06 08:30:02 · 827 阅读 · 0 评论 -
【Java-Redis】Redis 如何统计独立用户访问量?
本文介绍使用Redis的HyperLogLog(HLL)高效统计网站独立用户访问量(UV)的方案。HLL能以固定12KB内存统计亿级数据,误差仅0.81%,支持每日/每月UV统计和合并查询。通过Java代码示例演示了如何使用Jedis客户端实现UV的添加、查询和合并操作,相比传统Set存储方案,HLL在内存占用和性能上具有显著优势,是海量数据统计场景的理想选择。原创 2025-08-06 08:29:37 · 418 阅读 · 0 评论 -
【Java-Redis】Redis 和数据库双写一致性问题如何解决?
Redis与数据库双写一致性问题的解决方案包括:1)先更新数据库再删除缓存,避免永久不一致;2)延时双删策略应对并发场景;3)通过Canal监听binlog实现最终一致性;4)分布式锁保证强一致性。各方案在一致性、性能和复杂度上存在差异,需根据业务场景选择,核心原则是优先保证数据库正确性,缓存操作可重试。强一致性需以性能为代价,一般推荐先更新数据库再删除缓存的方案。原创 2025-08-06 08:28:38 · 344 阅读 · 0 评论 -
【Java-Redis】什么是缓存击穿,如何解决?
什么是缓存击穿缓存击穿是指在高并发场景下,某个热点数据的缓存过期或不存在,导致大量请求直接穿透缓存层,直接访问数据库或其他底层存储系统,造成系统瞬时负载过高甚至崩溃的现象。原创 2025-08-05 08:25:06 · 563 阅读 · 0 评论 -
【Java-Redis】什么是缓存抖动,如何解决?
缓存抖动(Cache Stampede)是指大量请求同时访问失效缓存时引发的数据库过载问题。典型场景如电商秒杀活动,当大批商品缓存同时过期时,突发流量可能压垮数据库。解决方案包括:1)为缓存设置随机过期时间,避免集中失效;2)采用"永不过息+异步更新"策略,结合分布式锁保证数据一致性;3)构建多级缓存体系(本地缓存+Redis)。某社交平台通过阶梯式过期策略和预加载机制,成功消除延迟尖刺,降低数据库80%负载。这些方案能有效缓解缓存抖动对系统稳定性的冲击。原创 2025-08-05 08:24:18 · 752 阅读 · 0 评论 -
【Java-Redis】什么是缓存雪崩,如何解决?
缓存雪崩是指大量缓存同时失效,导致请求直接冲击数据库引发系统崩溃。常见解决方案包括:1)设置随机过期时间分散失效节点;2)使用互斥锁控制缓存重建并发;3)构建多级缓存体系(本地+分布式);4)采用永久缓存配合异步更新;5)实现熔断降级机制。最佳实践为组合使用多级缓存、随机过期和熔断策略,像"减震器"一样保障系统平稳运行。通过案例对比可见,优化后能有效分散请求压力,避免数据库被瞬时流量击垮。原创 2025-08-04 08:27:19 · 1104 阅读 · 0 评论 -
【Java-Redis】什么是缓存预热和热备?
缓存预热和热备是提升系统性能与可用性的关键技术。缓存预热通过提前加载高频数据(如电商秒杀商品)到缓存中,解决冷启动问题,降低数据库压力。热备则通过主从实时同步(如支付系统),在主节点故障时快速切换备用节点,保障服务连续性。两者目标不同——预热优化性能,热备确保高可用,但可结合使用实现既高效又稳定的系统架构。核心区别在于触发时机(主动加载 vs 故障切换)和数据状态(静态预载 vs 动态同步)。原创 2025-08-04 08:26:58 · 324 阅读 · 0 评论 -
【Java-Redis】Redis 为什么不提供 Windows 版本?
Redis未提供官方Windows版本主要受四大技术限制:1) Linux的fork()系统调用在RDB持久化中效率远超Windows的CreateProcess;2) Windows内存管理存在硬性限制,无法实现Linux的灵活内存分配;3) NTFS文件系统导致AOF日志写入延迟增加30%;4) 网络模块需完全重构以适应IOCP模型。实测显示Windows移植版在并发连接、持久化成功率等方面性能显著下降。Redis选择专注UNIX生态以保持其高性能特性,Windows用户建议通过WSL2或Docker获原创 2025-08-04 08:26:40 · 652 阅读 · 0 评论 -
【Java-Redis】Redisson 是什么框架?
Redisson是建立在Redis基础上的Java分布式系统开发框架,就像给你的分布式系统装上了瑞士军刀。它不仅封装了Redis的常规操作,更重要的是提供了分布式环境中各种复杂场景的解决方案。原创 2025-08-04 08:26:18 · 262 阅读 · 0 评论 -
【Java-Redis】Redis 支持的 Java 客户端有哪些?
Redis Java客户端技术解析与选型指南 本文全面解析三大主流Redis Java客户端:Jedis(同步阻塞式)、Lettuce(异步非阻塞)和Redisson(分布式特性)。通过对比表展示各客户端特性差异,提供代码示例和应用场景分析。重点剖析Lettuce基于Netty的高并发实现(10w+ QPS)和Redisson的分布式锁机制。文章包含技术选型决策树、学习路线图和常见面试题解答,推荐新项目优先选择Lettuce,分布式系统采用Redisson,遗留系统可保留Jedis。附性能测试数据(Lett原创 2025-08-03 09:36:35 · 1021 阅读 · 0 评论 -
【Java-Redis】Redis 集群如何选择数据库?
Redis集群仅支持db0数据库,无法使用SELECT命令切换,这是由其分片机制和分布式特性决定的。数据路由复杂度和跨节点事务一致性是多数据库受限的主要原因。建议采用业务前缀隔离(如user:*)、多集群部署或命名空间管理作为替代方案。迁移数据时需注意键前缀转换,客户端应显式配置使用db0。通过业务层实现数据隔离比依赖数据库切换更符合集群架构特点。原创 2025-08-03 09:36:27 · 989 阅读 · 0 评论 -
【Java-Redis】Redis 有哪些高可用方案?
Redis高可用方案主要有四种:主从复制实现读写分离,适合初期业务但需手动故障切换;哨兵模式通过自动故障转移提升可用性,适合中小规模生产环境;Cluster集群采用分片机制支持大数据量高并发场景;云服务方案则提供全托管服务,适合无运维团队的企业。各方案在可用性、扩展性和运维成本上各有优劣,需根据业务规模和技术能力选择。原创 2025-08-02 15:19:10 · 817 阅读 · 0 评论 -
【Java-Redis】Redis 如何提高多核 CPU 利用率?
摘要: Redis通过多核优化策略显著提升性能:①分片部署将数据分散到多个实例,绑定独立CPU核心,实现并行处理;②多线程配置加速IO操作,主线程保持原子性,IO线程处理网络请求;③持久化优化采用混合模式(RDB+AOF)和后台线程异步处理;④系统层调优包括CPU亲和性绑定和NUMA架构适配;⑤混合架构结合读写分离与代理层,扩展处理能力。某电商案例显示,分片方案使QPS从5k提升至20k,综合优化可达10倍性能提升,CPU利用率从单核满载降至多核均衡负载。原创 2025-08-02 15:16:29 · 410 阅读 · 0 评论 -
【Java-Redis】Redis 如何实现大量数据插入?
本文详细介绍了Redis实现海量数据插入的5种专业方案。针对电商库存预热等场景,分析了传统逐条插入的性能瓶颈,提出了Pipeline管道技术、Redis协议文件导入、Lua脚本原子操作、Cluster并行插入和RedisGears分布式处理等解决方案。文章对比了各方案的性能指标(10万条数据耗时从0.1s到10s不等),并强调了生产环境中的注意事项,包括内存控制、持久化策略和连接池配置等。最后通过思维导图总结了不同规模数据的最优选择方案,为开发者提供了高效处理海量Redis数据插入的完整技术指南。原创 2025-08-02 15:16:11 · 490 阅读 · 0 评论 -
【Java-Redis】Redis 有哪几种持久化方式?
Redis持久化机制详解:RDB通过定时快照保存数据,恢复快但可能丢失近期数据;AOF记录操作日志,数据更安全但恢复较慢;Redis 4.0+的混合模式结合二者优势。金融系统推荐AOF+混合模式,缓存系统可用RDB。关键区别在于数据安全性、恢复速度和性能开销,需根据业务场景选择。高频面试问题涉及BGSAVE原理、AOF重写机制等。原创 2025-08-01 08:28:10 · 240 阅读 · 0 评论 -
【Java-Redis】Redis 内存满了怎么办?
本文针对Redis内存溢出问题,提出了一套完整的解决方案体系。核心解决思路包括调整内存淘汰策略和使用内存分析工具,并详细介绍了6大解决方案:淘汰策略配置、内存优化三板斧(数据结构优化/大Key拆分/过期时间设置)、集群化部署、混合存储方案、内存压缩及过期键加速清理。通过场景化案例、代码示例和流程图,展示了不同策略的适用场景和实施方法。最佳实践建议强调预防为主的原则,提出30%内存预留、分级存储和定期巡检等管理策略。最后附有完整的处理流程图,帮助开发者快速定位问题并选择最优解决方案。原创 2025-08-01 08:25:33 · 1064 阅读 · 0 评论 -
【Java-Redis】Redis 事务有什么用?
Redis事务通过MULTI-EXEC机制实现命令批量原子执行,适用于电商秒杀等并发场景。其核心特点是顺序执行、隔离性好但不支持回滚,与管道和Lua脚本配合可提升性能。相比传统数据库事务,Redis事务采用乐观锁,语法错误全失败但运行错误继续执行。典型应用包括库存扣减、订单生成等批量操作场景,但不适合需要严格原子性的复杂业务,此时建议改用Lua脚本。事务模式执行效率比普通模式提升6-7倍,是Redis高性能特性的重要体现。原创 2025-07-31 08:31:07 · 1031 阅读 · 0 评论 -
【Java-Redis】Redis 最大 key 大小?
Redis 单个 Key 最大限制为 512MB,由底层 SDS 结构和内存分配机制决定。大 Key 会导致内存碎片、命令阻塞、集群不均和持久化故障等问题。解决方案包括三级拆分策略(哈希/时间/二进制分片)、使用检测工具(--bigkeys、MEMORY USAGE)以及结合对象存储(如 OSS)。最佳实践建议超过 100KB 即考虑拆分,特殊场景可采用 CDN+对象存储方案。原创 2025-07-31 08:29:56 · 1130 阅读 · 0 评论