
数学建模
文章平均质量分 87
空脑小白
深耕 MATLAB 与 Python 数据分析及可视化领域,以代码为笔,数据为墨,解锁数据背后的逻辑密码与价值内涵。擅长运用 MATLAB 强大的数值计算、算法开发能力,以及 Python 丰富的第三方库(如 Pandas、Numpy、Matplotlib、Seaborn 等),从数据清洗、预处理,到复杂模型构建与可视化呈现,为科研与业务场景提供完整的数据解决方案。
科研探索之路永不止步,在闲余时光,积极挖掘各类前沿科研资源,涵盖学术文献、开源代码、优质教程、科研工具等,打破信息壁垒,毫无保留地分享给同行与爱好者。
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
2025年第十五届APMCM亚太地区大学生数学建模竞赛(中文赛项)B题(完整建模过程附python代码)
本文基于中风(stroke.csv)数据,通过数据预处理、特征分析和建模,探究疾病预测与共病风险。首先对数据进行缺失值填充和分类变量处理,通过可视化分析发现年龄、血糖、BMI等与中风显著相关。随后构建随机森林、逻辑回归等预测模型,采用SHAP进行特征重要性分析。进一步提出多疾病共病建模方法,分析中风、心脏病和肝硬化的联合发病概率。最后为WHO提供分层干预、智能筛查和共病监测等建议,强调高龄、高血压、糖尿病等高风险人群的预防管理。研究为慢性病防控提供了数据支持和决策依据。原创 2025-07-13 08:29:52 · 1341 阅读 · 0 评论 -
2025年第十五届APMCM亚太地区大学生数学建模竞赛(中文赛项)A题(完整建模过程附python代码)
本文研究了农业灌溉系统的智能化优化问题。针对土壤湿度预测,建立了随机森林回归模型(R²≈0.85),基于气温、气压等7个气象特征实现了5cm深度湿度的高精度预测。在灌溉系统设计中,采用模拟退火算法优化了喷头布置与管道网络,构建了包含引水管和储水罐的混合系统,总成本最优方案为32万元。针对旱灾情景的应急分析表明,当河水供应下降20%时,储水罐覆盖半径扩大至50m可使85%作物存活。最后提出的月度灌溉方案显示系统供水能力充足,无需调整布线。研究为精准农业灌溉提供了完整的代码原创 2025-07-12 08:59:13 · 1410 阅读 · 0 评论 -
2025年第十五届APMCM亚太地区大学生数学建模竞赛(中文赛项)C题(完整建模过程附python代码)
本文提出了一种基于QBoost算法的分类器组合优化方法。首先对Iris数据集进行预处理(Z-score标准化和标签转换),并构建多个基于单特征阈值的弱分类器。然后,将分类器组合问题转化为QUBO模型,通过最小化目标函数(包含误差项和正则项)来优化分类器选择。最后使用模拟退火算法求解最优组合,在测试集上评估性能。实验结果表明,该方法可以有效组合弱分类器,提升分类准确率。文中还提供了完整的Python实现代码,包括数据预处理、QUBO矩阵构建、求解和评估等步骤。该方法可扩展到其他分类器组合优化问题原创 2025-07-11 20:07:59 · 780 阅读 · 0 评论 -
2025年第十五届APMCM亚太地区大学生数学建模竞赛(中文赛项)C题解题思路(ChatGPT版)
任务目标:使用Iris数据集中的Setosa和Versicolor两类花,通过量子启发的QBoost算法实现分类。核心步骤:数据预处理:标准化特征并划分训练集/测试集。弱分类器设计:生成基于单特征阈值的简单分类器集合。QBoost建模:将集成学习问题转化为QUBO形式,通过量子退火求解。评估:分析模型性能并验证量子方法的有效性。原创 2025-07-11 19:20:38 · 713 阅读 · 0 评论 -
2025年第十五届APMCM亚太地区大学生数学建模竞赛(中文赛项)B题解题思路(ChatGPT版)
本文针对三类疾病(中风、心脏病、肝硬化)提出四阶段分析方法:1)数据预处理与统计分析,包括数据清洗、可视化及相关性分析;2)构建个体疾病预测模型,通过特征选择和多种算法优化;3)多疾病关联分析,建立共病预测模型和综合风险评估系统;4)基于分析结果向WHO提出预防建议,包括高危人群筛查和生活方式干预。研究采用统计分析与机器学习相结合的方法,重点解决从数据清洗到政策建议的全流程问题,为多疾病综合防控提供决策支持。原创 2025-07-11 19:11:47 · 550 阅读 · 0 评论 -
2025年第十五届APMCM亚太地区大学生数学建模竞赛(中文赛项)A题解题思路(ChatGPT版)
本文基于气象数据和土壤湿度数据,完成四个农业灌溉优化问题:(1)建立5cm土壤湿度预测模型,采用随机森林回归(R²=9.4%);(2)设计最小成本灌溉系统,考虑喷头覆盖、管道布线和储水罐优化;(3)分析旱灾应急策略,调整储水罐覆盖半径并评估作物存活率;(4)制定动态月度灌溉计划,验证系统适应性。问题1详细建模过程包括数据预处理(时间对齐、特征选择)、随机森林模型构建(RMSE=0.055)及预测应用,指出可通过引入时序特征和高级模型提升精度。整体解决方案从预测到优化逐步推进,为智能灌溉系统提供决策支持原创 2025-07-11 19:02:38 · 873 阅读 · 0 评论