Diffusion笔记

Diffusion是一种去噪扩散模型,通过逆向学习从全噪点恢复图像。CLIP是OpenAI的文本-图像匹配神经网络,实现文字和图像的高度关联。这两项技术展示了AI在图像生成和多模态理解上的进展。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、Diffusion是什么

Diffusion 是一种去噪扩散模型,工作原理是对图像逐步施加噪点,直至图像被破坏变成完全的噪点,然后再逆向学习从全噪点还原为原始图像的过程,而 AI 所看到的是全是噪点的画面如何一点点变清晰直到变成一幅画,通过这个逆向过程来学习如何作画。

二、CLIP是什么

CLIP 是 OpenAI 在 2021 年初发布的用于匹配文本和图像的神经网络模型,是近年来在多模态研究领域的杰出成果,它一方面对文字进行语言分析,另一方面对图形进行视觉分析,不断调整两个模型内部参数,达到文字和图像高度匹配的效果。

参考文档:

  • https://foresightnews.pro/article/detail/19939
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值