YOLOv5代码详解四

验证部分val.py这个文件主要是train.py每轮训练结束后,用val.py去验证当前模型的mAP、混滑矩阵等指标,以及各个超参数是否是最佳,不是最佳的话修改train.py里面的结构:确定是最佳了再用detect.py去泛化使用。
train.py‌:模型的“教练”,负责学习数据规律。
‌val.py‌:模型的“考官”,确保学习方向正确。
‌detect.py‌:模型的“实战测试”,验证其解决实际问题的能力。

一、导包和基本配置
1、导入安装好的python库
####### 基础系统与配置模块
import argparse # 命令行参数解析器,用于解析训练/推理时输入参数(如–weights, --batch-size)
import json # JSON编解码工具,用于读写模型配置、标签映射表等结构化数据文件
import os # 操作系统接口,处理文件路径、环境变量(如获取GPU数量、创建日志目录)
import sys # 解释器交互工具,用于程序退出、命令行参数读取(sys.argv)等系统级操作

####### 路径与并行处理模块
from pathlib import Path # 现代化路径操作库,替代os.path,支持链式调用
from threading import Thread # 线程管理,用于异步任务(如实时打印日志、数据加载与训练并行执行)

####### 数值计算与深度学习框架
import numpy as np # 多维数组运算库,用于图像预处理(归一化)、指标计算(mAP, IoU)
import

YOLO系列是基于深度学习的端到端实时目标检测方法。 PyTorch版的YOLOv5轻量而高性能,更加灵活和易用,当前非常流行。 本课程将手把手地教大家使用labelImg标注和使用YOLOv5训练自己的数据集。课程实战分为两个项目:单目标检测(足球目标检测)和多目标检测(足球和梅西同时检测)。  本课程的YOLOv5使用ultralytics/yolov5,在Windows和Ubuntu系统上分别做项目演示。包括:安装YOLOv5、标注自己的数据集、准备自己的数据集(自动划分训练集和验证集)、修改配置文件、使用wandb训练可视化工具、训练自己的数据集、测试训练出的网络模型和性能统计。 除本课程《YOLOv5实战训练自己的数据集(Windows和Ubuntu演示)》外,本人推出了有关YOLOv5目标检测的系列课程。请持续关注该系列的其它视频课程,包括:《YOLOv5(PyTorch)目标检测:原理与源码解析》课程链接:https://edu.csdn.net/course/detail/31428《YOLOv5目标检测实战:Flask Web部署》课程链接:https://edu.csdn.net/course/detail/31087《YOLOv5(PyTorch)目标检测实战:TensorRT加速部署》课程链接:https://edu.csdn.net/course/detail/32303《YOLOv5目标检测实战:Jetson Nano部署》课程链接:https://edu.csdn.net/course/detail/32451《YOLOv5+DeepSORT多目标跟踪与计数精讲》课程链接:https://edu.csdn.net/course/detail/32669《YOLOv5实战口罩佩戴检测》课程链接:https://edu.csdn.net/course/detail/32744《YOLOv5实战中国交通标志识别》课程链接:https://edu.csdn.net/course/detail/35209 《YOLOv5实战垃圾分类目标检测》课程链接:https://edu.csdn.net/course/detail/35284  
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值