使用集成显卡/集显(AMD)或者GPU安装运行pytorch?步骤解析~

本文指导如何在Windows系统下查看AMD集成显卡配置,通过PyTorch官网下载并验证安装,以及在遇到CUDA支持问题时的排查方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1、查看本地电脑显卡配置

Windows+r,打开命令行窗口,输入taskmgr,打开任务管理器,可以查看显卡配置

我这里的是AMD集成显卡,它与处理器共享内存,并且通常用于处理计算机的基本图形和显示操作。与NVIDIA做深度学习相比逊色,但是也能使用pytorch。

2、打开pytorch官网:

https://pytorch.org/

进入官网后,往下翻

复制命令,来到终端,我这里使用的是pycharm终端。(其实把pycharm中settings---tools--- shell path-更改成cmd.exe,便和cmd打开的终端没有区别了,读者自行选择)

来到终端,输入之前复制的命令。(事先建议先创建一个虚拟环境,避免很多额外的bugs)创建虚拟环境的教程请看我之前的一篇文章:

https://blog.csdn.net/zhang___jian61/article/details/133711509

粘贴之后按enter键,之后输入y,确定之后继续等待。

安装完毕之后,继续在终端输入python,可以看到>>>表示进入了Python环境。

进入Python环境之后,检测是否安装成功,输入以下命令:

import torch

如果没有报错,就安装成功了。

但是如果继续输入torch.cuda.is_available(),检查当前系统是否支持CUDA函数,如果返回false,则可能是配置不当,或者显卡配置不够(笔者就是这种情况,有钱了升级配置~~~)

### 查询适合 AMD Radeon 780M 显卡运行的 DeepSeek 模型 DeepSeek 是一种基于 Transformer 的大型语言模型,其训练和推理过程通常依赖于高性能的 GPU 加速。为了确保 DeepSeek 模型能够在特定硬件上高效运行,需考虑以下几个因素: #### 硬件规格分析 AMD Radeon 780M 属于集成显卡系列,主要面向轻薄笔记本电脑设计。以下是该显卡的关键参数[^2]: - **CUDA 支持**: AMD Radeon 不支持 NVIDIA CUDA 技术,因此无法直接利用针对 CUDA 编写的优化库。 - **浮点运算能力**: 集成显卡通常具有较低的 FP32 和 FP16 运算性能,可能会影响复杂神经网络的加速效果。 - **存容量**: Radeon 780M 使用共享内存架构,实际可用存量取决于系统的配置。 #### 软件环境适配 由于 DeepSeek 基于 PyTorch 或 TensorFlow 开发,而这些框架对 AMD GPU 提供的支持有限,建议采用 ROCm (Radeon Open Compute Platform) 来实现兼容性[^1]。ROCm 是由 AMD 推出的一套开源工具链,旨在为机器学习工作负载提供高效的 GPU 加速。 #### 可选 DeepSeek 模型 根据 Radeon 780M 的硬件特性以及软件生态现状,推荐以下几种简化版或量化版本的 DeepSeek 模型: 1. **DeepSeek-Large-Q4** 经过 INT4 量化的变体,在保持较高精度的同时著降低存储需求与计算负担。 2. **DeepSeek-Small** 小规模预训练模型,适用于资源受限场景下的快速部署。 需要注意的是,即使选择了合适的模型类型,仍可能存在因驱动程序不完善而导致的实际表现低于预期的情况[^3]。 ```python import torch from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("deepset/deepseek-small") model = AutoModelForCausalLM.from_pretrained("deepset/deepseek-small", device_map="auto") def generate_text(prompt): inputs = tokenizer.encode(prompt, return_tensors="pt").to('cuda') outputs = model.generate(inputs, max_length=50) result = tokenizer.decode(outputs[0], skip_special_tokens=True) return result ```
评论 17
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值